Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 19(11): 7632-7644, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31536362

RESUMO

We present a micrometer-scale, on-chip integrated, plasmonic enhanced graphene photodetector (GPD) for telecom wavelengths operating at zero dark current. The GPD is designed to directly generate a photovoltage by the photothermoelectric effect. It is made of chemical vapor deposited single layer graphene, and has an external responsivity ∼12.2 V/W with a 3 dB bandwidth ∼42 GHz. We utilize Au split-gates to electrostatically create a p-n-junction and simultaneously guide a surface plasmon polariton gap-mode. This increases the light-graphene interaction and optical absorption and results in an increased electronic temperature and steeper temperature gradient across the GPD channel. This paves the way to compact, on-chip integrated, power-efficient graphene based photodetectors for receivers in tele- and datacom modules.

2.
Opt Express ; 27(15): 20145-20155, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31510114

RESUMO

We report on a C-band double layer graphene electro-absorption modulator on a passive SOI platform showing 29GHz 3dB-bandwith and NRZ eye-diagrams extinction ratios ranging from 1.7 dB at 10 Gb/s to 1.3 dB at 50 Gb/s. Such high modulation speed is achieved thanks to the quality of the CVD pre-patterned single crystal growth and transfer on wafer method that permitted the integration of high-quality scalable graphene and low contact resistance. By demonstrating this high-speed CVD graphene EAM modulator integrated on Si photonics and the scalable approach, we are confident that graphene can satisfy the main requirements to be a competitive technology for photonics.

3.
Nano Lett ; 17(1): 150-155, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-27959556

RESUMO

Phase change materials (PCMs) are highly attractive for nonvolatile electrical and all-optical memory applications because of unique features such as ultrafast and reversible phase transitions, long-term endurance, and high scalability to nanoscale dimensions. Understanding their transient characteristics upon phase transition in both the electrical and the optical domains is essential for using PCMs in future multifunctional optoelectronic circuits. Here, we use a PCM nanowire embedded into a nanophotonic circuit to study switching dynamics in mixed-mode operation. Evanescent coupling between light traveling along waveguides and a phase-change nanowire enables reversible phase transition between amorphous and crystalline states. We perform time-resolved measurements of the transient change in both the optical transmission and resistance of the nanowire and show reversible switching operations in both the optical and the electrical domains. Our results pave the way toward on-chip multifunctional optoelectronic integrated devices, waveguide integrated memories, and hybrid processing applications.

4.
Nat Commun ; 14(1): 6471, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833246

RESUMO

Optoelectronics is a valuable solution to scale up wireless links frequency to sub-THz in the next generation antenna systems and networks. Here, we propose a low-power consumption, small footprint building block for 6 G and 5 G new radio wireless transmission allowing broadband capacity (e.g., 10-100 Gb/s per link and beyond). We demonstrate a wireless datalink based on graphene, reaching setup limited sub-THz carrier frequency and multi-Gbit/s data rate. Our device consists of a graphene-based integrated optoelectronic mixer capable of mixing an optically generated reference oscillator approaching 100 GHz, with a baseband electrical signal. We report >96 GHz optoelectronic bandwidth and -44 dB upconversion efficiency with a footprint significantly smaller than those of state-of-the-art photonic transmitters (i.e., <0.1 mm2). These results are enabled by an integrated-photonic technology based on wafer-scale high-mobility graphene and pave the way towards the development of optoelectronics-based arrayed-antennas for millimeter-wave technology.

5.
Nanoscale ; 14(6): 2167-2176, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35080556

RESUMO

Graphene grown via chemical vapour deposition (CVD) on copper foil has emerged as a high-quality, scalable material, that can be easily integrated on technologically relevant platforms to develop promising applications in the fields of optoelectronics and photonics. Most of these applications require low-contaminated high-mobility graphene (i.e., approaching 10 000 cm2 V-1 s-1 at room temperature) to reduce device losses and implement compact device design. To date, these mobility values are only obtained when suspending or encapsulating graphene. Here, we demonstrate a rapid, facile, and scalable cleaning process, that yields high-mobility graphene directly on the most common technologically relevant substrate: silicon dioxide on silicon (SiO2/Si). Atomic force microscopy (AFM) and spatially-resolved X-ray photoelectron spectroscopy (XPS) demonstrate that this approach is instrumental to rapidly eliminate most of the polymeric residues which remain on graphene after transfer and fabrication and that have adverse effects on its electrical properties. Raman measurements show a significant reduction of graphene doping and strain. Transport measurements of 50 Hall bars (HBs) yield hole mobility µh up to ∼9000 cm2 V-1 s-1 and electron mobility µe up to ∼8000 cm2 V-1 s-1, with average values µh ∼ 7500 cm2 V-1 s-1 and µe ∼ 6300 cm2 V-1 s-1. The carrier mobility of ultraclean graphene reaches values nearly double than those measured in graphene processed with acetone cleaning, which is the method widely adopted in the field. Notably, these mobility values are obtained over large-scale and without encapsulation, thus paving the way to the adoption of graphene in optoelectronics and photonics.

6.
ACS Nano ; 15(2): 3171-3187, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33522789

RESUMO

Graphene and related materials can lead to disruptive advances in next-generation photonics and optoelectronics. The challenge is to devise growth, transfer and fabrication protocols providing high (≥5000 cm2 V-1 s-1) mobility devices with reliable performance at the wafer scale. Here, we present a flow for the integration of graphene in photonics circuits. This relies on chemical vapor deposition (CVD) of single layer graphene (SLG) matrices comprising up to ∼12000 individual single crystals, grown to match the geometrical configuration of the devices in the photonic circuit. This is followed by a transfer approach which guarantees coverage over ∼80% of the device area, and integrity for up to 150 mm wafers, with room temperature mobility ∼5000 cm2 V-1 s-1. We use this process flow to demonstrate double SLG electro-absorption modulators with modulation efficiency ∼0.25, 0.45, 0.75, 1 dB V-1 for device lengths ∼30, 60, 90, 120 µm. The data rate is up to 20 Gbps. Encapsulation with single-layer hexagonal boron nitride (hBN) is used to protect SLG during plasma-enhanced CVD of Si3N4, ensuring reproducible device performance. The processes are compatible with full automation. This paves the way for large scale production of graphene-based photonic devices.

7.
ACS Nano ; 14(9): 11190-11204, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32790351

RESUMO

We report compact, scalable, high-performance, waveguide integrated graphene-based photodetectors (GPDs) for telecom and datacom applications, not affected by dark current. To exploit the photothermoelectric (PTE) effect, our devices rely on a graphene/polymer/graphene stack with static top split gates. The polymeric dielectric, poly(vinyl alcohol) (PVA), allows us to preserve graphene quality and to generate a controllable p-n junction. Both graphene layers are fabricated using aligned single-crystal graphene arrays grown by chemical vapor deposition. The use of PVA yields a low charge inhomogeneity ∼8 × 1010 cm-2 at the charge neutrality point, and a large Seebeck coefficient ∼140 µV K-1, enhancing the PTE effect. Our devices are the fastest GPDs operating with zero dark current, showing a flat frequency response up to 67 GHz without roll-off. This performance is achieved on a passive, low-cost, photonic platform, and does not rely on nanoscale plasmonic structures. This, combined with scalability and ease of integration, makes our GPDs a promising building block for next-generation optical communication devices.

8.
ACS Omega ; 4(1): 2256-2260, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459467

RESUMO

In this work, we report on a comparison among graphene field-effect transistors (GFETs) employing different dielectrics as gate layers to evaluate their microwave response. In particular, aluminum oxide (Al2O3), titanium oxide (TiO2), and hafnium oxide (HfO2) have been tested. GFETs have been fabricated on a single chip and a statistical analysis has been performed on a set of 24 devices for each type of oxide. Direct current and microwave measurements have been carried out on such GFETs and short circuit current gain and maximum available gain have been chosen as quality factors to evaluate their microwave performance. Our results show that all of the devices belonging to a specific group (i.e., with the same oxide) have a well-defined performance curve and that the choice of hafnium oxide represents the best trade-off in terms of dielectric properties. Graphene transistors employing HfO2 as the dielectric layer, in fact, exhibit the best performance in terms of both the cutoff frequency and the maximum frequency of oscillation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA