Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Acc Chem Res ; 55(24): 3706-3715, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36442497

RESUMO

ConspectusEven in the gas phase single atoms possess catalytic properties, which can be crucially enhanced and modulated by the chemical interaction with a solid support. This effect, known as electronic metal-support interaction, encompasses charge transfer, orbital overlap, coordination structure, etc., in other words, all the crucial features of the chemical bond. These very features are the object of this Account, with specific reference to open-shell (paramagnetic) single metal atoms or ions on oxide supports. Such atomically dispersed species are part of the emerging class of heterogeneous catalysts known as single-atom catalysts (SACs). In these materials, atomic dispersion ensures maximum atom utilization and uniform active sites, whereby the nature of the chemical interaction between the metal and the oxide surface modulates the catalytic activity of the metal active site by tuning the energy of the frontier orbitals. A comprehensive set of examples includes fourth period metal atoms and ions in zeolites on insulating (e.g., MgO) or reducible (e.g., TiO2) oxides and are among the most relevant catalysts for a wealth of key processes of industrial and environmental relevance, from the abatement of NOx to the selective oxidation of hydrocarbons and the conversion of methane to methanol.There exist several spectroscopic techniques able to inform on the geometric and electronic structure of isolated single metal ion sites, but either they yield information averaged over the bulk or they lack description of the intimate features of chemical bonding, which include covalency, ionicity, electron and spin delocalization. All of these can be recovered at once by measuring the magnetic interactions between open-shell metals and the surrounding nuclei with Electron Paramagnetic Resonance (EPR) spectroscopy. In the case of oxides, this entails the synthesis of 17O isotopically enriched materials. We have established 17O EPR as a unique source of information about the local binding environment around oxygen of magnetic atoms or ions on different oxidic supports to rationalize structure-property relationships. Here, we will describe strategies for 17O surface enrichments and approaches to monitor the state of charge and spin delocalization of atoms or ions from K to Zn dispersed on oxide surfaces characterized by different chemical properties (i.e., basicity or reducibility). Emphasis is placed on chemical insight at the atomic-scale level achieved by 17O EPR, which is a crucial step in understanding the structure-property relationships of single metal atom catalysts and in enabling efficient design of future materials for a range of end uses.

2.
Angew Chem Int Ed Engl ; 58(36): 12398-12403, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31294524

RESUMO

Determining structural models is pivotal to the rational understanding and development of heterogeneous catalytic systems. A paradigmatic case is represented by open-shell metals supported on oxides, where the catalytic properties crucially depend on the nature of the metal-oxygen bonds and the extent of charge and spin transfer. Through a combination of selective 17 O isotopic enrichment and the unique properties of open-shell s-state monovalent Group 12 cations, we derive a site-specific topological description of active sites in an MFI zeolite. We show that just a few selected sites out of all possible are populated and that the relative occupancies depend on the specific properties of the metal, and we provide maps of charge and spin transfer at the metal-oxygen interface. This approach is not restricted to zeotype materials, rather it is applicable to any catalysts supported on oxygen-containing materials.

3.
Angew Chem Int Ed Engl ; 57(33): 10702-10706, 2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-29938878

RESUMO

Evidence of the existence of nitrate radical in irradiated aqueous TiO2 suspensions in the presence of nitrate ions are reported for the first time. The joint use of UV/Vis and EPR spectroscopy showed that nitrate radicals are formed by hole induced oxidation of nitrate ions. Photocatalytic degradation of a model alkene compound allowed to highlight the presence of an intermediate organic nitrate deriving from nitrate radical attack to the double bond of the substrate. These results not only allow deeper understanding of photocatalytic processes, but open the route to new green photocatalytic syntheses initiated by nitrate radicals and to new insights in the field of atmospheric chemistry.

4.
Biochim Biophys Acta ; 1857(1): 98-106, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26482707

RESUMO

A conserved cysteine located in the signature motif of the catalytic center (H-cluster) of [FeFe]-hydrogenases functions in proton transfer. This residue corresponds to C298 in Clostridium acetobutylicum CaHydA. Despite the chemical and structural difference, the mutant C298D retains fast catalytic activity, while replacement with any other amino acid causes significant activity loss. Given the proximity of C298 to the H-cluster, the effect of the C298D mutation on the catalytic center was studied by continuous wave (CW) and pulse electron paramagnetic resonance (EPR) and by Fourier transform infrared (FTIR) spectroscopies. Comparison of the C298D mutant with the wild type CaHydA by CW and pulse EPR showed that the electronic structure of the center is not altered. FTIR spectroscopy confirmed that absorption peak values observed in the mutant are virtually identical to those observed in the wild type, indicating that the H-cluster is not generally affected by the mutation. Significant differences were observed only in the inhibited state Hox-CO: the vibrational modes assigned to the COexo and Fed-CO in this state are shifted to lower values in C298D, suggesting different interaction of these ligands with the protein moiety when C298 is changed to D298. More relevant to the catalytic cycle, the redox equilibrium between the Hox and Hred states is modified by the mutation, causing a prevalence of the oxidized state. This work highlights how the interactions between the protein environment and the H-cluster, a dynamic closely interconnected system, can be engineered and studied in the perspective of designing bio-inspired catalysts and mimics.


Assuntos
Clostridium acetobutylicum/enzimologia , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Hidrogenase/química , Proteínas Ferro-Enxofre/metabolismo , Mutação , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Domínio Catalítico , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/química , Modelos Moleculares
5.
Angew Chem Int Ed Engl ; 56(10): 2604-2607, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28128485

RESUMO

We report direct evidence for quintuplet spin states in a particular kind of reduced TiO2 anatase obtained by the mild oxidation of TiB2 under hydrothermal conditions. Continuous-wave and pulse EPR spectroscopy at X and Q band frequencies provide compelling evidence for the presence of S=2 states, stable in a wide range of temperatures up to room temperature. A tentative model, corroborated by spin-polarized DFT calculations, is proposed, which consists of four ferromagnetically interacting Ti3+ ions with distances ranging from 0.5 nm to 0.8 nm and tetrahedral arrangement.

6.
Langmuir ; 31(1): 569-77, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25514364

RESUMO

The interaction of acetylene with the TiO2 surface at room temperature entails a complex set of self-assembly reactions with the formation of products having relatively high molecular weight. In a previous paper by some of us (Jain, S. M.; et al. J. Mater. Chem. A 2014, 2, 12247-12254), the C2H2-TiO2 reaction has been monitored, essentially by Fourier transform infrared spectroscopy, at the surface of P25 (a mixture of anatase and rutile, typical benchmark material in the field of photocatalysis) in order to elucidate the nature of the products of this surface reaction. In the present paper, the same process was followed, for the first time, using electron paramagnetic resonance (EPR) and monitoring by the thermogravimetric analysis the weight loss of the material upon heating in order to further investigate the complex mechanism of the surface reaction. This was done using pure anatase and comparing the EPR results with those concerning both rutile and P25. The self-assembly mechanism occurring at the interface is accompanied by the formation of EPR visible Ti(3+) centers due to electrons injection in the TiO2 substrate. This finding clarifies that at least one of the reaction channels of this complex process (namely, the formation of polycyclic aromatic hydrocarbons) is based on the heterolytic dissociative chemisorption of acetylene, followed by a redox interaction between the adsorbate and the solid, which allows the creation of the building blocks necessary to assemble polyaromatic molecules.

7.
Angew Chem Int Ed Engl ; 54(16): 4857-60, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25706346

RESUMO

The typical activation of a fourth generation Ziegler-Natta catalyst TiCl4/MgCl2/phthalate with triethyl aluminum generates Ti(3+) centers that are investigated by multi-frequency continuous wave and pulse EPR methods. Two families of isolated, molecule-like Ti(3+) species have been identified. A comparison of the experimentally derived g tensors and (35,37)Cl hyperfine and nuclear-quadrupole tensors with DFT-computed values suggests that the dominant EPR-active Ti(3+)  species is located on MgCl2(110) surfaces (or equivalent MgCl2 terminations with tetra-coordinated Mg). O2 reactivity tests show that a fraction of these Ti sites is chemically accessible, an important result in view of the search for the true catalyst active site in olefin polymerization.

8.
Chemistry ; 20(24): 7381-8, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24824439

RESUMO

Transition-metal ions with open-shell configurations hold promise in the development of novel coordination chemistry and potentially unprecedented redox catalysis. Framework-substituted Ti(3+) ions with tetrahedral coordination are generated by reductive activation of titanium silicalite-1 with triethylaluminum, an indispensable co-catalyst for heterogeneous Ziegler-Natta polymerization catalysts. Continuous-wave and pulse electron paramagnetic resonance methods are applied to unravel details on the local environment of the reduced transition metal-ions, which are shown to be part of the silica framework by detection of (29)Si hyperfine interactions. The chemical accessibility of the reduced sites is probed using ammonia as probe molecule. Evidence is found for the coordination of a single ammonia molecule. Comparison to similar systems, such as TiAlPO-5, reveals clear differences in the coordination chemistry of the reduced Ti sites in the two solids, which may be understood considering the different electronic properties of the solid frameworks.

9.
Phys Chem Chem Phys ; 16(39): 21438-45, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25183041

RESUMO

The interaction of oxygen with the surface of CeO2-TiO2 mixed oxides prepared via sol-gel was investigated by means of electron paramagnetic resonance (EPR). Upon admission of molecular oxygen onto the surface of the as prepared materials (which underwent final oxidative calcination) the formation of superoxide O2(-) ions is observed without the need for preliminary annealing in a vacuum and consequent oxygen depletion. The superoxide species is symmetrically adsorbed ("side-on" structure) on the top of a Ce(4+) ion. Surprisingly the electron transfer is fully reversible at room temperature having the typical behavior shown by molecular oxygen carriers, which, however, link to oxygen in a completely different manner ("end-on" structure). We suggest that the active sites are Ce(3+) ions present in the stoichiometric cerium titanate which forms during the synthesis. The features of these Ce(3+) ions must be different from those of the same ions formed in CeO2 by reductive treatments, which show a different reactivity to O2. The observation reported here opens up innovative perspectives in the field of heterogeneous catalysis and in that of sensors as the total reversibility of the electron transfer is observed in a significant range of oxygen pressure.

10.
Phys Chem Chem Phys ; 15(24): 9435-47, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23695705

RESUMO

Electron Paramagnetic Resonance (EPR) techniques have been employed to investigate charge carrier trapping in the two main TiO2 polymorphs, anatase and rutile, with particular attention to the features of electron trapping sites (formally Ti(3+) ions). The classic CW-EPR technique in this case provides signals based on the g tensor only. Nevertheless a systematic analysis of the signals obtained in the various cases (anatase and rutile, surface and bulk centers, regular and defective sites) has been performed providing useful guidelines on a field affected by some confusion. The problem of the localization of the electron spin density has been tackled by means of Pulse-EPR hyperfine techniques on samples appositely enriched with (17)O. This approach has led to evidence of a substantial difference, in terms of wavefunction localization between anatase (electrons trapped in regular lattice sites exhibiting delocalized electron density) and rutile (interstitial sites showing localized electron density).

11.
J Phys Chem C Nanomater Interfaces ; 127(18): 8778-8787, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37197384

RESUMO

Particle attachment and neck formation inside TiO2 nanoparticle networks determine materials performance in sensing, photo-electrochemistry, and catalysis. Nanoparticle necks can feature point defects with potential impact on the separation and recombination of photogenerated charges. Here, we investigated with electron paramagnetic resonance a point defect that traps electrons and predominantly forms in aggregated TiO2 nanoparticle systems. The associated paramagnetic center resonates in the g factor range between g = 2.0018 and 2.0028. Structure characterization and electron paramagnetic resonance data suggest that during materials processing, the paramagnetic electron center accumulates in the region of nanoparticle necks, where O2 adsorption and condensation can occur at cryogenic temperatures. Complementary density functional theory calculations reveal that residual carbon atoms, which potentially originate from synthesis, can substitute oxygen ions in the anionic sublattice, where they trap one or two electrons that mainly localize at the carbon. Their emergence upon particle neck formation is explained by the synthesis- and/or processing-induced particle attachment and aggregation facilitating carbon atom incorporation into the lattice. This study represents a substantial advance in linking dopants, point defects, and their spectroscopic fingerprints to microstructural features of oxide nanomaterials.

12.
J Phys Condens Matter ; 34(13)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-34942602

RESUMO

The photochemical activity of the recently proposed CeO2-ZnO photocatalytic material active under visible light has been improved by means of significant modifications of its morphology. A polymeric templating agent (Pluronic) has been used in the synthesis obtaining a particle morphology based on hollow spheres that is better defined in the case of high template concentration. The charge separation ability and the light-induced surface electron transfer under irradiation with visible polychromatic light in various ranges of wavelengths has been investigated by electron paramagnetic resonance. The reactivity of the photogenerated holes has been monitored by the spin trapping technique in the presence of DMPO. The hollow spheres morphology achieved through the synthesis here reported leads to systems with a higher photoactivity under visible irradiation than the same system displaying the classic platelets morphology. A parallel increase of the photocatalytic activity of this novel system in pollution remediation reactions is therefore predictable.

13.
Photochem Photobiol Sci ; 10(3): 343-9, 2011 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-20725691

RESUMO

Two series of doped titanium dioxide samples (S-TiO(2) and F-TiO(2)) were prepared by the sol-gel method in the presence of different amounts of dopant source (thiourea and NH(4)F, respectively), followed by calcination at 500, 600 or 700 °C, and characterised by BET, UV-vis absorption, XPS, HRTEM, XRD and EPR analyses. Reference undoped materials were prepared by the same synthetic procedure. Their photocatalytic activity under visible light was investigated employing the photocatalytic degradation of formic acid in aqueous suspension as test reaction. S-doped TiO(2) showed a photocatalytic activity quite similar to that of undoped materials. In this regard, the insertion of S, characterised by a relatively large ionic radius, into the TiO(2) crystalline structure appears rather difficult, as confirmed by XPS analysis. On the contrary, moderate F doping was beneficial in increasing the rate of formic acid photocatalytic degradation, especially for photocatalysts calcined at high temperature, consisting of highly crystalline pure anatase, in which the rate of detrimental charge carrier recombination was reduced. For both series of doped materials, high doping levels appear to limit the semiconductor photoactivity, probably due to the formation of a progressively increasing number of charge recombination centres. The EPR characterisation of the investigated doped TiO(2) samples evidenced the presence of nitrogen containing species (nitric oxide radical encapsulated in micro-void, with no photoactivity, and N(b)˙ species, active in visible light sensitisation) and of titanium reduced centres Ti(3+), due to charge imbalance consequent to dopant introduction in the TiO(2) lattice either in anionic (F(-)) or in cationic form (S(6+)).

14.
Inorg Chem ; 50(6): 2385-94, 2011 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-21314144

RESUMO

The (17)O and (1)H hyperfine interactions of water ligands in the Ti(III) aquo complex in a frozen solution were determined using Hyperfine Sublevel Correlation (HYSCORE) and Pulse Electron Nuclear Double Resonance (ENDOR) spectroscopies at 9.5 GHz. The isotropic hyperfine interaction (hfi) constant of the water ligand (17)O was found to be about 7.5 MHz. (1)H Single Matched Resonance Transfer (SMART) HYSCORE spectra allowed resolution of the hfi interactions of the two inequivalent water ligand protons and the relative orientations of their hfi tensors. The magnetic and geometrical parameters extracted from the experiments were compared with the results of DFT computations for different geometrical arrangements of the water ligands around the cation. The theoretical observable properties (g tensor (1)H and (17)O hfi tensors and their orientations) of the [Ti(H(2)O)(6)](3+) complex are in quantitative agreement with the experiments for two slightly different geometrical arrangements associated with D(3d) and C(i) symmetries.


Assuntos
Teoria Quântica , Titânio/química , Água/química , Cátions/química , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Estrutura Molecular , Soluções
15.
Angew Chem Int Ed Engl ; 50(35): 8038-40, 2011 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-21744443

RESUMO

Reduced states in TiO(2) : (17)O hyperfine sublevel correlation spectroscopy was used to monitor the local environment of stable Ti(3+) ions generated in a (17)O-enriched polycrystalline TiO(2) (rutile) sample. A hyperfine interaction of about 8 MHz is found, which is analogous to that observed for molecular Ti(3+) aqua complex cations and suggests a localized nature of the unpaired electron wave function for these centers at 4 K.

16.
Chemistry ; 16(23): 6776-85, 2010 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-20514645

RESUMO

The formation of O(2) (-) radical anions by contact of O(2) molecules with a Na pre-covered MgO surface is studied by a combined EPR and quantum chemical approach. Na atoms deposited on polycrystalline MgO samples are brought into contact with O(2). The typical EPR signal of isolated Na atoms disappears when the reaction with O(2) takes place and new paramagnetic species are observed, which are attributed to different surface-stabilised O(2) (-) radicals. Hyperfine sublevel correlation (HYSCORE) spectroscopy allows the superhyperfine interaction tensor of O(2) (-)Na(+) species to be determined, demonstrating the direct coordination of the O(2) (-) adsorbate to surface Na(+) cations. DFT calculations enable the structural details of the formed species to be determined. Matrix-isolated alkali superoxides are used as a standard to enable comparison of the formed species, revealing important and unexpected contributions of the MgO matrix in determining the electronic structure of the surface-stabilised Na(+)-O(2) (-) complexes.

17.
Phys Chem Chem Phys ; 12(39): 12520-4, 2010 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-20721402

RESUMO

Electron bombardment of single-crystalline MgO(001) films has been shown to result in the formation of surface color centers. In this report we present an alternative way to produce surface color centers on single-crystalline MgO(001) films using additive Mg coloring. Electron paramagnetic resonance (EPR) spectroscopy was used to prove the formation of surface paramagnetic color centers upon deposition of small amounts of Mg on MgO(001) films at 50 K. With increasing coverage the number of Mg induced color centers rises up to a coverage of about 0.03 monolayers and thereafter decreases with increasing Mg coverage. At high coverage and low temperatures metallic Mg clusters nucleate on the surface of the MgO(001) film as shown by infrared (IR) spectroscopy using CO as a probe molecule.

18.
Chem Sci ; 11(26): 6623-6641, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34094123

RESUMO

Engineering defects in semiconducting metal oxides is a challenge that remains at the forefront of materials chemistry research. Nitrogen has emerged as one of the most attractive elements able to tune the photochemical and photocatalytic properties of semiconducting oxides, boosting visible-light harvesting and charge separation events, key elements in promoting solar driven chemical reactions. Doping with nitrogen is also a strategy suggested to obtain p-type conduction properties in oxides showing n-type features in their pristine state and to impart collective magnetic properties to the same systems. Here, we review the evolution in the understanding of the role of nitrogen doping in modifying the photochemical and electronic properties of the most common semiconducting oxides used in mentioned applications including: TiO2, ZnO, SnO2 and zirconium titanates. With an emphasis on polycrystalline materials, we highlight the unique role of Electron Paramagnetic Resonance (EPR) spectroscopy in the direct detection of open-shell N-based defects and in the definition of their structural and electronic properties. Synthetic strategies for the insertion of nitrogen defects in the various matrices are also discussed, along with the influence of the corresponding low-lying energy states on the general electronic properties of the doped solids.

19.
J Am Chem Soc ; 131(35): 12664-70, 2009 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-19673518

RESUMO

The reaction of excess electrons at the surface of MgO with ammonia leads to surface ammoniated electrons analogous to those formed when alkali metals are dissolved in anhydrous ammonia. Surface excess electrons are found to be solvated by up to three ammonia molecules, and well-resolved CW and pulsed EPR spectra allow for a precise description of the unpaired electron spin density distribution over the solvent molecules. The large majority of the electron spin density resides in the first-shell nitrogen fragments. HYSCORE spectra allow obtaining for the first time the full hyperfine interaction of the solvated electron with the ammonia protons, which is consistent with a small and negative spin density in the (1)H 1s orbital. Furthermore, the hyperfine and nuclear quadrupole tenors of the second-shell nitrogens could be unravelled.

20.
J Phys Condens Matter ; 31(44): 444001, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31311893

RESUMO

The contribution of electron magnetic resonance techniques, and in particular of CW-EPR, to the experimental research on photocatalytic phenomena is illustrated in this paper with selected examples. In the first part of the paper the role of EPR in unravelling the nature and the features of extrinsic point defects in semiconducting oxides is epitomized using the important example of the photoactive nitrogen center in various semiconducting oxides. In the second part we describe how EPR can monitor the processes that follow the initial photoinduced charge separation in photocatalysis, namely the stabilisation, migration and surface reactivity of electrons and holes. Finally, we will discuss how the role of EPR in photocatalysis is not limited to monitor phenomena occurring in the solid or at its surface but it can be extended to the investigation of the liquid phase by employing the spin trapping techniques to monitor the nature and the concentration of the reactive free radicals formed along the photocatalytic process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA