Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Cell ; 165(1): 100-110, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26924577

RESUMO

The immunological synapse formed between a cytotoxic T lymphocyte (CTL) and an infected or transformed target cell is a physically active structure capable of exerting mechanical force. Here, we investigated whether synaptic forces promote the destruction of target cells. CTLs kill by secreting toxic proteases and the pore forming protein perforin into the synapse. Biophysical experiments revealed a striking correlation between the magnitude of force exertion across the synapse and the speed of perforin pore formation on the target cell, implying that force potentiates cytotoxicity by enhancing perforin activity. Consistent with this interpretation, we found that increasing target cell tension augmented pore formation by perforin and killing by CTLs. Our data also indicate that CTLs coordinate perforin release and force exertion in space and time. These results reveal an unappreciated physical dimension to lymphocyte function and demonstrate that cells use mechanical forces to control the activity of outgoing chemical signals.


Assuntos
Sinapses Imunológicas , Linfócitos T Citotóxicos/fisiologia , Animais , Fenômenos Biomecânicos , Degranulação Celular , Linhagem Celular Tumoral , Camundongos , Perforina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/imunologia
2.
J Cell Sci ; 136(8)2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37083041

RESUMO

Focal adhesions are composed of transmembrane integrins, linking the extracellular matrix to the actomyosin cytoskeleton, via cytoplasmic proteins. Adhesion depends on the activation of integrins. Talin and kindlin proteins are intracellular activators of integrins that bind to ß-integrin cytoplasmic tails. Integrin activation and clustering through extracellular ligands guide the organization of adhesion complexes. However, the roles of talin and kindlin in this process are poorly understood. To determine the contribution of talin, kindlin, lipids and actomyosin in integrin clustering, we used a biomimetic in vitro system, made of giant unilamellar vesicles, containing transmembrane integrins (herein αIIbß3), with purified talin (talin-1), kindlin (kindlin-2, also known as FERMT2) and actomyosin. Here, we show that talin and kindlin individually have the ability to cluster integrins. Talin and kindlin synergize to induce the formation of larger integrin clusters containing the three proteins. Comparison of protein density reveals that kindlin increases talin and integrin density, whereas talin does not affect kindlin and integrin density. Finally, kindlin increases integrin-talin-actomyosin coupling. Our study unambiguously demonstrates how kindlin and talin cooperate to induce integrin clustering, which is a major parameter for cell adhesion.


Assuntos
Integrinas , Talina , Integrinas/metabolismo , Talina/genética , Talina/metabolismo , Actomiosina , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Adesão Celular
3.
Nat Mater ; 22(7): 913-924, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37386067

RESUMO

Microtubules are cytoskeleton components with unique mechanical and dynamic properties. They are rigid polymers that alternate phases of growth and shrinkage. Nonetheless, the cells can display a subset of stable microtubules, but it is unclear whether microtubule dynamics and mechanical properties are related. Recent in vitro studies suggest that microtubules have mechano-responsive properties, being able to stabilize their lattice by self-repair on physical damage. Here we study how microtubules respond to cycles of compressive forces in living cells and find that microtubules become distorted, less dynamic and more stable. This mechano-stabilization depends on CLASP2, which relocates from the end to the deformed shaft of microtubules. This process seems to be instrumental for cell migration in confined spaces. Overall, these results demonstrate that microtubules in living cells have mechano-responsive properties that allow them to resist and even counteract the forces to which they are subjected, being a central mediator of cellular mechano-responses.


Assuntos
Citoesqueleto , Microtúbulos , Movimento Celular , Polímeros , Projetos de Pesquisa
4.
Nat Methods ; 16(12): 1263-1268, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31636458

RESUMO

Super-resolution microscopy offers tremendous opportunities to unravel the complex and dynamic architecture of living cells. However, current super-resolution microscopes are well suited for revealing protein distributions or cell morphology, but not both. We present a super-resolution platform that permits correlative single-molecule imaging and stimulated emission depletion microscopy in live cells. It gives nanoscale access to the positions and movements of synaptic proteins within the morphological context of growth cones and dendritic spines.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Imagem Individual de Molécula/métodos , Animais , Células Cultivadas , Feminino , Humanos , Camundongos , Ratos , Ratos Sprague-Dawley
5.
Int J Mol Sci ; 22(12)2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199292

RESUMO

Giant unilamellar vesicles (GUV) are powerful tools to explore physics and biochemistry of the cell membrane in controlled conditions. For example, GUVs were extensively used to probe cell adhesion, but often using non-physiological linkers, due to the difficulty of incorporating transmembrane adhesion proteins into model membranes. Here we describe a new protocol for making GUVs incorporating the transmembrane protein integrin using gel-assisted swelling. We report an optimised protocol, enumerating the pitfalls encountered and precautions to be taken to maintain the robustness of the protocol. We characterise intermediate steps of small proteoliposome formation and the final formed GUVs. We show that the integrin molecules are successfully incorporated and are functional.


Assuntos
Géis/química , Integrinas/metabolismo , Lipossomas Unilamelares/química , Adesão Celular , Fluorescência , Humanos , Bicamadas Lipídicas/metabolismo , Lipídeos/química , Tamanho da Partícula
6.
Nat Methods ; 14(12): 1184-1190, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29083400

RESUMO

Single-molecule localization microscopy techniques have proven to be essential tools for quantitatively monitoring biological processes at unprecedented spatial resolution. However, these techniques are very low throughput and are not yet compatible with fully automated, multiparametric cellular assays. This shortcoming is primarily due to the huge amount of data generated during imaging and the lack of software for automation and dedicated data mining. We describe an automated quantitative single-molecule-based super-resolution methodology that operates in standard multiwell plates and uses analysis based on high-content screening and data-mining software. The workflow is compatible with fixed- and live-cell imaging and allows extraction of quantitative data like fluorophore photophysics, protein clustering or dynamic behavior of biomolecules. We demonstrate that the method is compatible with high-content screening using 3D dSTORM and DNA-PAINT based super-resolution microscopy as well as single-particle tracking.


Assuntos
Bases de Dados Factuais , Processamento de Imagem Assistida por Computador/métodos , Imagem Individual de Molécula/métodos , Animais , Células COS , Chlorocebus aethiops , Mineração de Dados , Corantes Fluorescentes , Células HeLa , Humanos , Proteínas de Membrana/análise , Transporte Proteico , Receptores de Neurotransmissores/análise , Software , Fluxo de Trabalho
7.
Exp Cell Res ; 379(2): 235-244, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30943383

RESUMO

Cells are mechanical living machines that remodel their microenvironment by adhering and generating forces on the extracellular matrix (ECM) using integrin-dependent adhesion sites (IAS). In return, the biochemical and physical nature of the ECM determines cellular behavior and morphology during proliferation, differentiation and migration. IAS come in different shapes and forms. They have specific compositions, morphologies, mechanical and biochemical signaling activities, which serve different cellular functions. Proteomic studies showed that IAS are composed of a large repertoire of proteins that could be linked to different functional activities, including signaling, force-transmission and force-sensing. Thanks to recent technological advances in microscopy and protein engineering, it is now possible to localize single proteins in three dimensions inside IAS, determine their diffusive behaviors, orientations, and how much mechanical force is transmitted across individual components. Here, we review how researchers have used those tools to investigate how IAS components assemble and dynamically interact to produce diverse functions of adhesive structures.


Assuntos
Adesão Celular/fisiologia , Matriz Extracelular/metabolismo , Integrinas/metabolismo , Substâncias Macromoleculares/metabolismo , Animais , Humanos , Mecanotransdução Celular/fisiologia , Estresse Mecânico
8.
Nature ; 511(7509): 319-25, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25030168

RESUMO

Malignancy is associated with altered expression of glycans and glycoproteins that contribute to the cellular glycocalyx. We constructed a glycoprotein expression signature, which revealed that metastatic tumours upregulate expression of bulky glycoproteins. A computational model predicted that these glycoproteins would influence transmembrane receptor spatial organization and function. We tested this prediction by investigating whether bulky glycoproteins in the glycocalyx promote a tumour phenotype in human cells by increasing integrin adhesion and signalling. Our data revealed that a bulky glycocalyx facilitates integrin clustering by funnelling active integrins into adhesions and altering integrin state by applying tension to matrix-bound integrins, independent of actomyosin contractility. Expression of large tumour-associated glycoproteins in non-transformed mammary cells promoted focal adhesion assembly and facilitated integrin-dependent growth factor signalling to support cell growth and survival. Clinical studies revealed that large glycoproteins are abundantly expressed on circulating tumour cells from patients with advanced disease. Thus, a bulky glycocalyx is a feature of tumour cells that could foster metastasis by mechanically enhancing cell-surface receptor function.


Assuntos
Glicocálix/metabolismo , Glicoproteínas/metabolismo , Integrinas/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Mama/citologia , Mama/metabolismo , Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Fibroblastos , Glicocálix/química , Humanos , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Integrinas/química , Camundongos , Terapia de Alvo Molecular , Mucina-1/metabolismo , Metástase Neoplásica/patologia , Células Neoplásicas Circulantes , Ligação Proteica , Receptores de Superfície Celular
9.
EMBO J ; 33(23): 2745-64, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25293574

RESUMO

Actin dynamics drive morphological remodeling of neuronal dendritic spines and changes in synaptic transmission. Yet, the spatiotemporal coordination of actin regulators in spines is unknown. Using single protein tracking and super-resolution imaging, we revealed the nanoscale organization and dynamics of branched F-actin regulators in spines. Branched F-actin nucleation occurs at the PSD vicinity, while elongation occurs at the tip of finger-like protrusions. This spatial segregation differs from lamellipodia where both branched F-actin nucleation and elongation occur at protrusion tips. The PSD is a persistent confinement zone for IRSp53 and the WAVE complex, an activator of the Arp2/3 complex. In contrast, filament elongators like VASP and formin-like protein-2 move outwards from the PSD with protrusion tips. Accordingly, Arp2/3 complexes associated with F-actin are immobile and surround the PSD. Arp2/3 and Rac1 GTPase converge to the PSD, respectively, by cytosolic and free-diffusion on the membrane. Enhanced Rac1 activation and Shank3 over-expression, both associated with spine enlargement, induce delocalization of the WAVE complex from the PSD. Thus, the specific localization of branched F-actin regulators in spines might be reorganized during spine morphological remodeling often associated with synaptic plasticity.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Espinhas Dendríticas/fisiologia , Modelos Biológicos , Densidade Pós-Sináptica/metabolismo , Transmissão Sináptica/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células Cultivadas , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/ultraestrutura , Forminas , Proteínas do Tecido Nervoso/metabolismo , Reação em Cadeia da Polimerase , Proteínas , Ratos , Ratos Sprague-Dawley , Estatísticas não Paramétricas
10.
Exp Cell Res ; 343(1): 28-34, 2016 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-26571074

RESUMO

Cells adjust their adhesive and cytoskeletal organizations according to changes in the biochemical and physical nature of their surroundings. In return, by adhering and generating forces on the extracellular matrix (ECM) cells organize their microenvironment. Integrin-dependent focal adhesions (FAs) are the converging zones integrating biochemical and biomechanical signals arising from the ECM and the actin cytoskeleton. Thus, integrin-mediated adhesion and mechanotransduction, the conversion of mechanical forces into biochemical signals, are involved in critical cellular functions such as migration, proliferation and differentiation, and their deregulation contributes to pathologies including cancer. A challenging problem is to decipher how stochastic protein movements and interactions lead to formation of dynamic architecture such as integrin-dependent adhesive structures. In this review, we will describe recent advances made possible by super-resolution microscopies and single molecule tracking approaches that provided new understanding on the organization and the dynamics of integrins and intracellular regulators at the nanoscale in living cells.


Assuntos
Integrinas/metabolismo , Adesão Celular , Humanos , Mecanotransdução Celular , Microscopia , Nanotecnologia , Transporte Proteico , Estresse Mecânico
11.
Cell Mol Life Sci ; 73(16): 3053-73, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27105623

RESUMO

In the central nervous system, most excitatory post-synapses are small subcellular structures called dendritic spines. Their structure and morphological remodeling are tightly coupled to changes in synaptic transmission. The F-actin cytoskeleton is the main driving force of dendritic spine remodeling and sustains synaptic plasticity. It is therefore essential to understand how changes in synaptic transmission can regulate the organization and dynamics of actin binding proteins (ABPs). In this review, we will provide a detailed description of the organization and dynamics of F-actin and ABPs in dendritic spines and will discuss the current models explaining how the actin cytoskeleton sustains both structural and functional synaptic plasticity.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Espinhas Dendríticas/fisiologia , Proteínas dos Microfilamentos/metabolismo , Plasticidade Neuronal , Animais , Humanos , Transdução de Sinais , Sinapses/fisiologia
12.
J Neurosci ; 33(32): 13204-24, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23926273

RESUMO

The spatiotemporal organization of neurotransmitter receptors in postsynaptic membranes is a fundamental determinant of synaptic transmission and information processing by the brain. Using four independent super-resolution light imaging methods and EM of genetically tagged and endogenous receptors, we show that, in rat hippocampal neurons, AMPARs are often highly concentrated inside synapses into a few clusters of ∼70 nm that contain ∼20 receptors. AMPARs are stabilized reversibly in these nanodomains and diffuse freely outside them. Nanodomains are dynamic in their shape and position within synapses and can form or disappear within minutes, although they are mostly stable for up to 1 h. AMPAR nanodomains are often, but not systematically, colocalized with clusters of the scaffold protein PSD95, which are generally of larger size than AMPAR nanoclusters. PSD95 expression level regulates AMPAR nanodomain size and compactness in parallel to miniature EPSC amplitude. Monte Carlo simulations further indicate the impact of AMPAR concentration in clusters on the efficacy of synaptic transmission. The observation that AMPARs are highly concentrated in nanodomains, instead of diffusively distributed in the PSD as generally thought, has important consequences on our understanding of excitatory neurotransmission. Furthermore, our results indicate that glutamatergic synaptic transmission is controlled by the nanometer-scale regulation of the size of these highly concentrated nanodomains.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Nanoestruturas , Neurônios/citologia , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Sinapses/ultraestrutura , Membranas Sinápticas/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Animais , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Proteína 4 Homóloga a Disks-Large , Embrião de Mamíferos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Feminino , Antagonistas GABAérgicos/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/citologia , Proteínas de Arcabouço Homer , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Proteínas de Membrana/genética , Modelos Biológicos , Mutação/genética , Picrotoxina/farmacologia , Transporte Proteico/genética , Transporte Proteico/fisiologia , Ratos , Processos Estocásticos , Membranas Sinápticas/ultraestrutura
13.
Cancer Cell Int ; 14: 42, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24860258

RESUMO

BACKGROUND: Astrocytoma are known to have altered glutamate machinery that results in the release of large amounts of glutamate into the extracellular space but the precise role of glutamate in favoring cancer processes has not yet been fully established. Several studies suggested that glutamate might provoke active killing of neurons thereby producing space for cancer cells to proliferate and migrate. Previously, we observed that calcium promotes disassembly of integrin-containing focal adhesions in astrocytoma, thus providing a link between calcium signaling and cell migration. The aim of this study was to determine how calcium signaling and glutamate transmission cooperate to promote enhanced astrocytoma migration. METHODS: The wound-healing model was used to assay migration of human U87MG astrocytoma cells and allowed to monitor calcium signaling during the migration process. The effect of glutamate on calcium signaling was evaluated together with the amount of glutamate released by astrocytoma during cell migration. RESULTS: We observed that glutamate stimulates motility in serum-starved cells, whereas in the presence of serum, inhibitors of glutamate receptors reduce migration. Migration speed was also reduced in presence of an intracellular calcium chelator. During migration, cells displayed spontaneous Ca(2+) transients. L-THA, an inhibitor of glutamate re-uptake increased the frequency of Ca(2+) oscillations in oscillating cells and induced Ca(2+) oscillations in quiescent cells. The frequency of migration-associated Ca(2+) oscillations was reduced by prior incubation with glutamate receptor antagonists or with an anti-ß1 integrin antibody. Application of glutamate induced increases in internal free Ca(2+) concentration ([Ca(2+)]i). Finally we found that compounds known to increase [Ca(2+)]i in astrocytomas such as thapsigagin, ionomycin or the metabotropic glutamate receptor agonist t-ACPD, are able to induce glutamate release. CONCLUSION: Our data demonstrate that glutamate increases migration speed in astrocytoma cells via enhancement of migration-associated Ca(2+) oscillations that in turn induce glutamate secretion via an autocrine mechanism. Thus, glutamate receptors are further validated as potential targets for astrocytoma cancer therapy.

14.
Nano Lett ; 13(4): 1489-94, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23458263

RESUMO

Single molecule tracking in live cells is the ultimate tool to study subcellular protein dynamics, but it is often limited by the probe size and photostability. Because of these issues, long-term tracking of proteins in confined and crowded environments, such as intracellular spaces, remains challenging. We have developed a novel optical probe consisting of 5 nm gold nanoparticles functionalized with a small fragment of camelid antibodies that recognize widely used green fluorescent proteins (GFPs) with a very high affinity, which we call GFP-nanobodies. These small gold nanoparticles can be detected and tracked using photothermal imaging for arbitrarily long periods of time. Surface and intracellular GFP-proteins were effectively labeled even in very crowded environments such as adhesion sites and cytoskeletal structures both in vitro and in live cell cultures. These nanobody-coated gold nanoparticles are probes with unparalleled capabilities; small size, perfect photostability, high specificity, and versatility afforded by combination with the vast existing library of GFP-tagged proteins.


Assuntos
Anticorpos/química , Diagnóstico por Imagem , Ouro/química , Nanopartículas/química , Proteínas de Fluorescência Verde , Humanos , Nanotecnologia
15.
Curr Opin Cell Biol ; 88: 102369, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759257

RESUMO

The biomechanical regulation of the cytoskeleton and cell adhesions underlies various essential cellular functions. Studying them requires visualizing their nanostructure and molecular dynamics with evermore precise spatio-temporal resolution. In this review we will focus on the recent advances in single molecule fluorescence imaging techniques and discuss how they improve our understanding of mechanically sensitive cellular structures such as adhesions and the cytoskeleton. We will also discuss future directions for research, emphasizing on the 3D nature of cellular structures and tissues, their mechanical regulation at the molecule level, as well as how super-resolution microscopy will enhance our knowledge on protein structure and conformational changes in the cellular context.


Assuntos
Citoesqueleto , Imagem Individual de Molécula , Humanos , Animais , Citoesqueleto/metabolismo , Fenômenos Biomecânicos , Adesão Celular , Biofísica
16.
Elife ; 132024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38167295

RESUMO

Despite the constant advances in fluorescence imaging techniques, monitoring endogenous proteins still constitutes a major challenge in particular when considering dynamics studies or super-resolution imaging. We have recently evolved specific protein-based binders for PSD-95, the main postsynaptic scaffold proteins at excitatory synapses. Since the synthetic recombinant binders recognize epitopes not directly involved in the target protein activity, we consider them here as tools to develop endogenous PSD-95 imaging probes. After confirming their lack of impact on PSD-95 function, we validated their use as intrabody fluorescent probes. We further engineered the probes and demonstrated their usefulness in different super-resolution imaging modalities (STED, PALM, and DNA-PAINT) in both live and fixed neurons. Finally, we exploited the binders to enrich at the synapse genetically encoded calcium reporters. Overall, we demonstrate that these evolved binders constitute a robust and efficient platform to selectively target and monitor endogenous PSD-95 using various fluorescence imaging techniques.


Assuntos
Corantes Fluorescentes , Neurônios , Proteína 4 Homóloga a Disks-Large/genética , Proteína 4 Homóloga a Disks-Large/metabolismo , Neurônios/metabolismo , Corantes Fluorescentes/metabolismo , Sinapses/metabolismo
17.
Cell Death Dis ; 15(4): 304, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38693139

RESUMO

Abnormal intraneuronal accumulation of soluble and insoluble α-synuclein (α-Syn) is one of the main pathological hallmarks of synucleinopathies, such as Parkinson's disease (PD). It has been well documented that the reversible liquid-liquid phase separation of α-Syn can modulate synaptic vesicle condensates at the presynaptic terminals. However, α-Syn can also form liquid-like droplets that may convert into amyloid-enriched hydrogels or fibrillar polymorphs under stressful conditions. To advance our understanding on the mechanisms underlying α-Syn phase transition, we employed a series of unbiased proteomic analyses and found that actin and actin regulators are part of the α-Syn interactome. We focused on Neural Wiskott-Aldrich syndrome protein (N-WASP) because of its association with a rare early-onset familial form of PD. In cultured cells, we demonstrate that N-WASP undergoes phase separation and can be recruited to synapsin 1 liquid-like droplets, whereas it is excluded from α-Syn/synapsin 1 condensates. Consistently, we provide evidence that wsp-1/WASL loss of function alters the number and dynamics of α-Syn inclusions in the nematode Caenorhabditis elegans. Together, our findings indicate that N-WASP expression may create permissive conditions that promote α-Syn condensates and their potentially deleterious conversion into toxic species.


Assuntos
Caenorhabditis elegans , Proteína Neuronal da Síndrome de Wiskott-Aldrich , alfa-Sinucleína , alfa-Sinucleína/metabolismo , Animais , Humanos , Caenorhabditis elegans/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Actinas/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Sinapsinas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo
18.
Trends Cell Biol ; 33(3): 204-220, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36055943

RESUMO

Detection and conversion of mechanical forces into biochemical signals is known as mechanotransduction. From cells to tissues, mechanotransduction regulates migration, proliferation, and differentiation in processes such as immune responses, development, and cancer progression. Mechanosensitive structures such as integrin adhesions, the actin cortex, ion channels, caveolae, and the nucleus sense and transmit forces. In vitro approaches showed that mechanosensing is based on force-dependent protein deformations and reorganizations. However, the mechanisms in cells remained unclear since cell imaging techniques lacked molecular resolution. Thanks to recent developments in super-resolution microscopy (SRM) and molecular force sensors, it is possible to obtain molecular insight of mechanosensing in live cells. We discuss how understanding of molecular mechanotransduction was revolutionized by these innovative approaches, focusing on integrin adhesions, actin structures, and the plasma membrane.


Assuntos
Actinas , Mecanotransdução Celular , Humanos , Mecanotransdução Celular/fisiologia , Actinas/metabolismo , Citoesqueleto/metabolismo , Integrinas/metabolismo , Microscopia , Adesão Celular , Citoesqueleto de Actina/metabolismo
19.
Nat Commun ; 14(1): 6730, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872159

RESUMO

Neuronal transmission relies on the regulated secretion of neurotransmitters, which are packed in synaptic vesicles (SVs). Hundreds of SVs accumulate at synaptic boutons. Despite being held together, SVs are highly mobile, so that they can be recruited to the plasma membrane for their rapid release during neuronal activity. However, how such confinement of SVs corroborates with their motility remains unclear. To bridge this gap, we employ ultrafast single-molecule tracking (SMT) in the reconstituted system of native SVs and in living neurons. SVs and synapsin 1, the most highly abundant synaptic protein, form condensates with liquid-like properties. In these condensates, synapsin 1 movement is slowed in both at short (i.e., 60-nm) and long (i.e., several hundred-nm) ranges, suggesting that the SV-synapsin 1 interaction raises the overall packing of the condensate. Furthermore, two-color SMT and super-resolution imaging in living axons demonstrate that synapsin 1 drives the accumulation of SVs in boutons. Even the short intrinsically-disordered fragment of synapsin 1 was sufficient to restore the native SV motility pattern in synapsin triple knock-out animals. Thus, synapsin 1 condensation is sufficient to guarantee reliable confinement and motility of SVs, allowing for the formation of mesoscale domains of SVs at synapses in vivo.


Assuntos
Sinapsinas , Vesículas Sinápticas , Animais , Vesículas Sinápticas/metabolismo , Sinapsinas/genética , Sinapsinas/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais Geneticamente Modificados
20.
Sci Adv ; 8(8): eabm2696, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35213220

RESUMO

Intermediate filaments (IFs) are involved in key cellular functions including polarization, migration, and protection against large deformations. These functions are related to their remarkable ability to extend without breaking, a capacity that should be determined by the molecular organization of subunits within filaments. However, this structure-mechanics relationship remains poorly understood at the molecular level. Here, using super-resolution microscopy (SRM), we show that vimentin filaments exhibit a ~49-nanometer axial repeat both in cells and in vitro. As unit-length filaments (ULFs) were measured at ~59 nanometers, this demonstrates a partial overlap of ULFs during filament assembly. Using an SRM-compatible stretching device, we also provide evidence that the extensibility of vimentin is due to the unfolding of its subunits and not to their sliding, thus establishing a direct link between the structural organization and its mechanical properties. Overall, our results pave the way for future studies of IF assembly, mechanical, and structural properties in cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA