Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 500(2): 256-260, 2018 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-29653101

RESUMO

Proper control of multipotent/stem cell number and fate is essential for ensuing organ formation during development. ß1-integrin, a subfamily of cell surface receptors, has a conserved role in maintenance of multipotent/stem cells, including renal progenitor cells, follicle stem cells, epidermal stem cells and neural stem cells. However, it remains unclear whether ß1-integrin has a role in cardiac progenitor cell (CPC) development. Here we show that a mesodermal deletion of ß1-integrin decreases Isl1+ cell number in the second pharyngeal arch (PA2), where CPCs undergo renewal and expansion. Mesp1 lineage-specific mosaicism revealed that ß1-integrin-deleted Isl1+ cells do not proliferate in the PA2. Consistently, ß1-integrin-deleted Isl1+ CPCs failed to expand in vitro, independent of PA2 cells. ß1-integrin co-localized and physically associated with Numb, a crucial regulator of CPC renewal and expansion. Importantly, Numb/Numbl-deleted CPCs showed dramatic reduction in ß1-integrin levels. These findings suggest that ß1-integrin is a key mediator of the Numb pathway in CPC maintenance.


Assuntos
Integrina beta1/metabolismo , Proteínas de Membrana/metabolismo , Miócitos Cardíacos/citologia , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Embrião de Mamíferos/metabolismo , Deleção de Genes , Coração/embriologia , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos Knockout , Ligação Proteica
2.
Hum Mol Genet ; 24(14): 3994-4005, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25877302

RESUMO

Recent studies identified a previously uncharacterized gene C5ORF42 (JBTS17) as a major cause of Joubert syndrome (JBTS), a ciliopathy associated with cerebellar abnormalities and other birth defects. Here we report the first Jbts17 mutant mouse model, Heart Under Glass (Hug), recovered from a forward genetic screen. Exome sequencing identified Hug as a S235P missense mutation in the mouse homolog of JBTS17 (2410089e03rik). Hug mutants exhibit multiple birth defects typical of ciliopathies, including skeletal dysplasia, polydactyly, craniofacial anomalies, kidney cysts and eye defects. Some Hug mutants exhibit congenital heart defects ranging from mild pulmonary stenosis to severe pulmonary atresia. Immunostaining showed JBTS17 is localized in the cilia transition zone. Fibroblasts from Hug mutant mice and a JBTS patient with a JBTS17 mutation showed ciliogenesis defects. Significantly, Hug mutant fibroblasts showed loss of not only JBTS17, but also NPHP1 and CEP290 from the cilia transition zone. Hug mutants exhibited reduced ciliation in the cerebellum. This was associated with reduction in cerebellar foliation. Using a fibroblast wound-healing assay, we showed Hug mutant cells cannot establish cell polarity required for directional cell migration. However, stereocilia patterning was grossly normal in the cochlea, indicating planar cell polarity is not markedly affected. Overall, we showed the JBTS pathophysiology is replicated in the Hug mutant mice harboring a Jbts17 mutation. Our findings demonstrate JBTS17 is a cilia transition zone component that acts upstream of other Joubert syndrome associated transition zone proteins NPHP1 and CEP290, indicating its importance in the pathogenesis of Joubert syndrome.


Assuntos
Doenças Cerebelares/genética , Cerebelo/anormalidades , Proteínas de Membrana/genética , Retina/anormalidades , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Animais , Antígenos de Neoplasias , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Polaridade Celular , Células Cultivadas , Doenças Cerebelares/patologia , Cerebelo/patologia , Cílios , Proteínas do Citoesqueleto , Modelos Animais de Doenças , Anormalidades do Olho/genética , Anormalidades do Olho/patologia , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Doenças Renais Císticas/genética , Doenças Renais Císticas/patologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Gravidez , Transporte Proteico/genética , Retina/patologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-28159874

RESUMO

A central role for cilia in congenital heart disease (CHD) was recently identified in a large-scale mouse mutagenesis screen. Although the screen was phenotype-driven, the majority of genes recovered were cilia-related, suggesting that cilia play a central role in CHD pathogenesis. This partly reflects the role of cilia as a hub for cell signaling pathways regulating cardiovascular development. Consistent with this, many cilia-transduced cell signaling genes were also recovered, and genes regulating vesicular trafficking, a pathway essential for ciliogenesis and cell signaling. Interestingly, among CHD-cilia genes recovered, some regulate left-right patterning, indicating cardiac left-right asymmetry disturbance may play significant roles in CHD pathogenesis. Clinically, CHD patients show a high prevalence of ciliary dysfunction and show enrichment for de novo mutations in cilia-related pathways. Combined with the mouse findings, this would suggest CHD may be a new class of ciliopathy.


Assuntos
Cílios/fisiologia , Ciliopatias/complicações , Cardiopatias Congênitas/etiologia , Animais , Humanos
4.
Biol Open ; 5(3): 323-35, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26883626

RESUMO

Planar cell polarity (PCP) is controlled by a conserved pathway that regulates directional cell behavior. Here, we show that mutant mice harboring a newly described mutation termed Beetlejuice (Bj) in Prickle1 (Pk1), a PCP component, exhibit developmental phenotypes involving cell polarity defects, including skeletal, cochlear and congenital cardiac anomalies. Bj mutants die neonatally with cardiac outflow tract (OFT) malalignment. This is associated with OFT shortening due to loss of polarized cell orientation and failure of second heart field cell intercalation mediating OFT lengthening. OFT myocardialization was disrupted with cardiomyocytes failing to align with the direction of cell invasion into the outflow cushions. The expression of genes mediating Wnt signaling was altered. Also noted were shortened but widened bile ducts and disruption in canonical Wnt signaling. Using an in vitro wound closure assay, we showed Bj mutant fibroblasts cannot establish polarized cell morphology or engage in directional cell migration, and their actin cytoskeleton failed to align with the direction of wound closure. Unexpectedly, Pk1 mutants exhibited primary and motile cilia defects. Given Bj mutant phenotypes are reminiscent of ciliopathies, these findings suggest Pk1 may also regulate ciliogenesis. Together these findings show Pk1 plays an essential role in regulating cell polarity and directional cell migration during development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA