Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(3): e2211092120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36634141

RESUMO

Recent experimental and computational investigations have shown that trace amounts of surfactants, unavoidable in practice, can critically impair the drag reduction of superhydrophobic surfaces (SHSs), by inducing Marangoni stresses at the air-liquid interface. However, predictive models for realistic SHS geometries do not yet exist, which has limited the understanding and mitigation of these adverse surfactant effects. To address this issue, we derive a model for laminar, three-dimensional flow over SHS gratings as a function of geometry and soluble surfactant properties, which together encompass 10 dimensionless groups. We establish that the grating length g is the key geometric parameter and predict that the ratio between actual and surfactant-free slip increases with g2. Guided by our model, we perform synergistic numerical simulations and microfluidic experiments, finding good agreement with the theory as we vary surfactant type and SHS geometry. Our model also enables the estimation, based on velocity measurements, of a priori unknown properties of surfactants inherently present in microfluidic systems. For SHSs, we show that surfactant effects can be predicted by a single parameter, representing the ratio between the grating length and the interface length scale beyond which the flow mobilizes the air-water interface. This mobilization length is more sensitive to the surfactant chemistry than to its concentration, such that even trace-level contaminants may significantly increase drag if they are highly surface active. These findings advance the fundamental understanding of realistic interfacial flows and provide practical strategies to maximize superhydrophobic drag reduction.


Assuntos
Surfactantes Pulmonares , Tensoativos , Tensoativos/química , Microfluídica , Lipoproteínas , Interações Hidrofóbicas e Hidrofílicas
2.
Phys Rev Lett ; 113(9): 097701, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25216005

RESUMO

We use direct numerical simulations of the Poisson-Nernst-Planck equations to study the charging kinetics of porous electrodes and to evaluate the predictive capabilities of effective circuit models, both linear and nonlinear. The classic transmission line theory of de Levie holds for general electrode morphologies, but only at low applied potentials. Charging dynamics are slowed appreciably at high potentials, yet not as significantly as predicted by the nonlinear transmission line model of Biesheuvel and Bazant. We identify surface conduction as a mechanism which can effectively "short circuit" the high-resistance electrolyte in the bulk of the pores, thus accelerating the charging dynamics and boosting power densities. Notably, the boost in power density holds only for electrode morphologies with continuous conducting surfaces in the charging direction.

3.
J Comput Neurosci ; 34(2): 259-71, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22903565

RESUMO

We employ optimal control theory to design an event-based, minimum energy, desynchronizing control stimulus for a network of pathologically synchronized, heterogeneously coupled neurons. This works by optimally driving the neurons to their phaseless sets, switching the control off, and letting the phases of the neurons randomize under intrinsic background noise. An event-based minimum energy input may be clinically desirable for deep brain stimulation treatment of neurological diseases, like Parkinson's disease. The event-based nature of the input results in its administration only when it is necessary, which, in general, amounts to fewer applications, and hence, less charge transfer to and from the tissue. The minimum energy nature of the input may also help prolong battery life for implanted stimulus generators. For the example considered, it is shown that the proposed control causes a considerable amount of randomization in the timing of each neuron's next spike, leading to desynchronization for the network.


Assuntos
Potenciais de Ação/fisiologia , Relógios Biológicos/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Animais , Simulação por Computador , Humanos , Fatores de Tempo
4.
bioRxiv ; 2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37333205

RESUMO

Aquaporins provide a new class of genetic tools for imaging molecular activity in deep tissues by increasing the rate of cellular water diffusion, which generates magnetic resonance contrast. However, distinguishing aquaporin contrast from the tissue background is challenging because water diffusion is also influenced by structural factors such as cell size and packing density. Here, we developed and experimentally validated a Monte Carlo model to analyze how cell radius and intracellular volume fraction quantitatively affect aquaporin signals. We demonstrated that a differential imaging approach based on time-dependent changes in diffusivity can improve specificity by unambiguously isolating aquaporin-driven contrast from the tissue background. Finally, we used Monte Carlo simulations to analyze the connection between diffusivity and the percentage of cells engineered to express aquaporin, and established a simple mapping that accurately determined the volume fraction of aquaporin-expressing cells in mixed populations. This study creates a framework for broad applications of aquaporins, particularly in biomedicine and in vivo synthetic biology, where quantitative methods to measure the location and performance of genetic devices in whole vertebrates are necessary.

5.
ACS Synth Biol ; 12(10): 3041-3049, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37793076

RESUMO

Aquaporins provide a unique approach for imaging genetic activity in deep tissues by increasing the rate of cellular water diffusion, which generates a magnetic resonance contrast. However, distinguishing aquaporin signals from the tissue background is challenging because water diffusion is influenced by structural factors, such as cell size and packing density. Here, we developed a Monte Carlo model to analyze how cell radius and intracellular volume fraction quantitatively affect aquaporin signals. We demonstrated that a differential imaging approach based on subtracting signals at two diffusion times can improve specificity by unambiguously isolating aquaporin signals from the tissue background. We further used Monte Carlo simulations to analyze the connection between diffusivity and the percentage of cells engineered to express aquaporin and established a mapping that accurately determined the volume fraction of aquaporin-expressing cells in mixed populations. The quantitative framework developed in this study will enable a broad range of applications in biomedical synthetic biology, requiring the use of aquaporins to noninvasively monitor the location and function of genetically engineered devices in live animals.


Assuntos
Aquaporinas , Imagem de Difusão por Ressonância Magnética , Animais , Genes Reporter , Imagem de Difusão por Ressonância Magnética/métodos , Método de Monte Carlo , Difusão , Água , Aquaporinas/genética , Imagem Molecular , Simulação por Computador
6.
J Fluid Mech ; 8832020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31806916

RESUMO

Superhydrophobic surfaces (SHSs) have the potential to reduce drag at solid boundaries. However, multiple independent studies have recently shown that small amounts of surfactant, naturally present in the environment, can induce Marangoni forces that increase drag, at least in the laminar regime. To obtain accurate drag predictions, one must solve the mass, momentum, bulk surfactant and interfacial surfactant conservation equations. This requires expensive simulations, thus preventing surfactant from being widely considered in SHS studies. To address this issue, we propose a theory for steady, pressure-driven, laminar, two-dimensional flow in a periodic SHS channel with soluble surfactant. We linearise the coupling between flow and surfactant, under the assumption of small concentration, finding a scaling prediction for the local slip length. To obtain the drag reduction and interfacial shear, we find a series solution for the velocity field by assuming Stokes flow in the bulk and uniform interfacial shear. We find how the slip and drag depend on the nine dimensionless groups that together characterize the surfactant transport near SHSs, the gas fraction and the normalized interface length. Our model agrees with numerical simulations spanning orders of magnitude in each dimensionless group. The simulations also provide the constants in the scaling theory. Our model significantly improves predictions relative to a surfactant-free one, which can otherwise overestimate slip and underestimate drag by several orders of magnitude. Our slip length model can provide the boundary condition in other simulations, thereby accounting for surfactant effects without having to solve the full problem.

7.
J Phys Condens Matter ; 31(36): 365301, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31071698

RESUMO

We investigate the scaling behavior for roughening and coarsening of mounds during unstable epitaxial growth. By using kinetic Monte Carlo (KMC) simulations of two lattice-gas models of crystal surfaces, we find scaling exponents that characterize roughening and coarsening at long times. Our simulation data show that these exponents have a complicated dependence on key model parameters that describe a step edge barrier and downward transport mechanisms. This behavior has not been fully described in previous works. In particular, we find that these scaling exponents vary continuously with parameters controlling the surface current. The kinetic processes of the KMC models that we employ include surface diffusion, edge diffusion, step-edge barriers, and also account for transient kinetics during deposition via downward funneling and transient mobility. Our extensive simulations make evident the salient interplay between step-edge barrier strength and transient kinetic processes.

8.
Phys Rev E ; 100(5-1): 052802, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31870009

RESUMO

We study analytically and numerically aspects of the dynamics of slope selection for one-dimensional models describing the motion of line defects, steps, in homoepitaxial crystal growth. The kinetic processes include diffusion of adsorbed atoms (adatoms) on terraces, attachment and detachment of atoms at steps with large yet finite, positive Ehrlich-Schwoebel step-edge barriers, material deposition on the surface from above, and the mechanism of downward funneling (DF) via a phenomenological parameter. In this context, we account for the influence of boundary conditions at extremal steps on the dynamics of slope selection. Furthermore, we consider the effect of repulsive, nearest-neighbor force-dipole step-step interactions. For geometries with straight steps, we carry out numerical simulations of step flow, which demonstrate that slope selection eventually occurs. We apply perturbation theory to characterize time-periodic solutions of step flow for slope-selected profiles. By this method, we show how a simplified step flow theory with constant probabilities for the motion of deposited atoms can serve as an effective model of slope selection in the presence of DF. Our analytical findings compare favorably to step simulations.

9.
IEEE Trans Pattern Anal Mach Intell ; 30(8): 1400-14, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18566494

RESUMO

Variational cost functions that are based on pairwise similarity between pixels can be minimized within level set framework resulting in a binary image segmentation. In this paper we extend such cost functions and address multi-region image segmentation problem by employing a multi-phase level set framework. For multi-modal images cost functions become more complicated and relatively difficult to minimize. We extend our previous work, proposed for background/foreground separation, to the segmentation of images in more than two regions. We also demonstrate an efficient implementation of the curve evolution, which reduces the computational time significantly. Finally, we validate the proposed method on the Berkeley Segmentation Data Set by comparing its performance with other segmentation techniques.


Assuntos
Algoritmos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Reconhecimento Automatizado de Padrão/métodos , Técnica de Subtração , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador
10.
PLoS One ; 11(3): e0150889, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26986970

RESUMO

We introduce a fast error-free tracking method applicable to sequences of two and three dimensional images. The core idea is to use Quadtree (resp. Octree) data structures for representing the spatial discretization of an image in two (resp. three) spatial dimensions. This representation enables one to merge into large computational cells the regions that can be faithfully described with such a coarse representation, thus significantly reducing the total number of degrees of freedom that are processed, without compromising accuracy. This encoding is particularly effective in the case of algorithms based on moving fronts, since the adaptive refinement provides a natural means to focus the processing resources on information near the moving front. In this paper, we use an existing contour based tracker and reformulate it to the case of Quad-/Oc-tree data structures. Relevant mathematical assumptions and derivations are presented for this purpose. We then demonstrate that, on standard bio-medical image sequences, a speed up of 5X is easily achieved in 2D and about 10X in 3D.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento Tridimensional/economia , Movimento (Física)
11.
Artigo em Inglês | MEDLINE | ID: mdl-25215739

RESUMO

We formulate and implement a generalized island-dynamics model of epitaxial growth based on the level-set technique to include the effect of an additional energy barrier for the attachment and detachment of atoms at step edges. For this purpose, we invoke a mixed, Robin-type, boundary condition for the flux of adsorbed atoms (adatoms) at each step edge. In addition, we provide an analytic expression for the requisite equilibrium adatom concentration at the island boundary. The only inputs are atomistic kinetic rates. We present a numerical scheme for solving the adatom diffusion equation with such a mixed boundary condition. Our simulation results demonstrate that mounds form when the step-edge barrier is included, and that these mounds steepen as the step-edge barrier increases.


Assuntos
Modelos Teóricos , Simulação por Computador , Difusão , Cinética , Movimento (Física)
13.
Math Biosci Eng ; 9(3): 527-37, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22881024

RESUMO

We introduce a computationally efficient approach to the generation of Digital Reconstructed Radiographs (DRRs) needed to perform three dimensional to two dimensional medical image registration and apply this algorithm to virtual surgery. The DRR generation process is the bottleneck of any three dimensional to two dimensional registration system, since its computational complexity scales with the number of voxels in the Computed Tomography Data, which can be of the order of tens to hundreds of millions. Our approach originates from the segmentation of the volumetric data into multiple regions, which allows a compact representation via Octree Data Structures. This, in turn, yields efficient storage and access of the attenuation indexes of the volumetric cells, required in the projection procedure that generates the DRR. A functional based on Mutual Information is then maximized to obtain the alignment of the DRR with the two dimensional X-ray fluoroscopy scans acquired during the operation. Promising experimental results on real data are presented.


Assuntos
Imageamento Tridimensional/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Fluoroscopia/métodos , Humanos
14.
Math Biosci Eng ; 2(2): 209-26, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20369919

RESUMO

The purpose of this study is to develop automatic algorithms for the segmentation phase of radiotherapy treatment planning. We develop new image processing techniques that are based on solving a partial diferential equation for the evolution of the curve that identifies the segmented organ. The velocity function is based on the piecewise Mumford-Shah functional. Our method incorporates information about the target organ into classical segmentation algorithms. This information, which is given in terms of a three- dimensional wireframe representation of the organ, serves as an initial guess for the segmentation algorithm. We check the performance of the new algorithm on eight data sets of three diferent organs: rectum, bladder, and kidney. The results of the automatic segmentation were compared with a manual seg- mentation of each data set by radiation oncology faculty and residents. The quality of the automatic segmentation was measured with the k-statistics", and with a count of over- and undersegmented frames, and was shown in most cases to be very close to the manual segmentation of the same data. A typical segmentation of an organ with sixty slices takes less than ten seconds on a Pentium IV laptop.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA