Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Opt Express ; 31(10): 16709-16718, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157744

RESUMO

Optical sectioning structured illumination microscopy (OS-SIM) provides optical sectioning capability in wide-field microscopy. The required illumination patterns have traditionally been generated using spatial light modulators (SLM), laser interference patterns, or digital micromirror devices (DMDs) which are too complex to implement in miniscope systems. MicroLEDs have emerged as an alternative light source for patterned illumination due to their extreme brightness capability and small emitter sizes. This paper presents a directly addressable striped microLED microdisplay with 100 rows on a flexible cable (70 cm long) for use as an OS-SIM light source in a benchtop setup. The overall design of the microdisplay is described in detail with luminance-current-voltage characterization. OS-SIM implementation with a benchtop setup shows the optical sectioning capability of the system by imaging within a 500 µm thick fixed brain slice from a transgenic mouse where oligodendrocytes are labeled with a green fluorescent protein (GFP). Results show improved contrast in reconstructed optically sectioned images of 86.92% (OS-SIM) compared with 44.31% (pseudo-widefield). MicroLED based OS-SIM therefore offers a new capability for deep tissue widefield imaging.

2.
Biophys J ; 112(8): 1692-1702, 2017 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-28445760

RESUMO

Determining the spatial relationship of individual proteins in dense assemblies remains a challenge for superresolution nanoscopy. The organization of aquaporin-4 (AQP4) into large plasma membrane assemblies provides an opportunity to image membrane-bound AQP4 antibodies (AQP4-IgG) and evaluate changes in their spatial distribution due to alterations in AQP4 isoform expression and AQP4-IgG epitope specificity. Using stimulated emission depletion nanoscopy, we imaged secondary antibody labeling of monoclonal AQP4-IgGs with differing epitope specificity bound to isolated tetramers (M1-AQP4) and large orthogonal arrays of AQP4 (M23-AQP4). Imaging secondary antibodies bound to M1-AQP4 allowed us to infer the size of individual AQP4-IgG binding events. This information was used to model the assembly of larger AQP4-IgG complexes on M23-AQP4 arrays. A scoring algorithm was generated from these models to characterize the spatial arrangement of bound AQP4-IgG antibodies, yielding multiple epitope-specific patterns of bound antibodies on M23-AQP4 arrays. Our results delineate an approach to infer spatial relationships within protein arrays using stimulated emission depletion nanoscopy, offering insight into how information on single antibody fluorescence events can be used to extract information from dense protein assemblies under a biologic context.


Assuntos
Aquaporina 4/imunologia , Autoanticorpos/metabolismo , Membrana Celular/metabolismo , Algoritmos , Animais , Aquaporina 4/química , Aquaporina 4/ultraestrutura , Autoanticorpos/química , Autoanticorpos/ultraestrutura , Células CHO , Simulação por Computador , Cricetulus , Epitopos , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Imunoglobulina G/ultraestrutura , Análise dos Mínimos Quadrados , Microscopia Confocal , Microscopia de Fluorescência/métodos , Modelos Moleculares , Neuromielite Óptica/imunologia , Isoformas de Proteínas , Análise Espacial
3.
Cytometry A ; 91(7): 662-674, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28608985

RESUMO

Detection of circulating tumor cells (CTCs) in a blood sample is limited by the sensitivity and specificity of the biomarker panel used to identify CTCs over other blood cells. In this work, we present Bayesian theory that shows how test sensitivity and specificity set the rarity of cell that a test can detect. We perform our calculation of sensitivity and specificity on our image cytometry biomarker panel by testing on pure disease positive (D+ ) populations (MCF7 cells) and pure disease negative populations (D- ) (leukocytes). In this system, we performed multi-channel confocal fluorescence microscopy to image biomarkers of DNA, lipids, CD45, and Cytokeratin. Using custom software, we segmented our confocal images into regions of interest consisting of individual cells and computed the image metrics of total signal, second spatial moment, spatial frequency second moment, and the product of the spatial-spatial frequency moments. We present our analysis of these 16 features. The best performing of the 16 features produced an average separation of three standard deviations between D+ and D- and an average detectable rarity of ∼1 in 200. We performed multivariable regression and feature selection to combine multiple features for increased performance and showed an average separation of seven standard deviations between the D+ and D- populations making our average detectable rarity of ∼1 in 480. Histograms and receiver operating characteristics (ROC) curves for these features and regressions are presented. We conclude that simple regression analysis holds promise to further improve the separation of rare cells in cytometry applications. © 2017 International Society for Advancement of Cytometry.


Assuntos
DNA/análise , Queratinas/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Metabolismo dos Lipídeos , Células Neoplásicas Circulantes/patologia , Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/análise , Linhagem Celular Tumoral , Separação Celular/métodos , Humanos , Citometria por Imagem/métodos , Lipídeos
4.
Opt Express ; 25(25): 31451-31461, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29245820

RESUMO

We present numerical simulations of multielectrode electrowetting devices used in a novel optical design to correct wavefront aberration. Our optical system consists of two multielectrode devices, preceded by a single fixed lens. The multielectrode elements function as adaptive optical devices that can be used to correct aberrations inherent in many imaging setups, biological samples, and the atmosphere. We are able to accurately simulate the liquid-liquid interface shape using computational fluid dynamics. Ray tracing analysis of these surfaces shows clear evidence of aberration correction. To demonstrate the strength of our design, we studied three different input aberrations mixtures that include astigmatism, coma, trefoil, and additional higher order aberration terms, with amplitudes as large as one wave at 633 nm.

5.
Opt Lett ; 40(11): 2553-6, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26030555

RESUMO

We report a miniature, lightweight fiber-coupled confocal fluorescence microscope that incorporates an electrowetting variable focus lens to provide axial scanning for full three-dimensional (3D) imaging. Lateral scanning is accomplished by coupling our device to a laser-scanning confocal microscope through a coherent imaging fiber-bundle. The optical components of the device are combined in a custom 3D-printed adapter with an assembled weight of <2 g that can be mounted onto the head of a mouse. Confocal sectioning provides an axial resolution of ∼12 µm and an axial scan range of ∼80 µm. The lateral field-of-view is 300 µm, and the lateral resolution is 1.8 µm. We determined these parameters by imaging fixed sections of mouse neuronal tissue labeled with green fluorescent protein (GFP) and fluorescent bead samples in agarose gel. To demonstrate viability for imaging intact tissue, we resolved multiple optical sections of ex vivo mouse olfactory nerve fibers expressing yellow fluorescent protein (YFP).


Assuntos
Eletroumectação , Lentes , Microscopia Confocal/instrumentação , Microscopia de Fluorescência/instrumentação , Miniaturização/instrumentação , Fibras Ópticas , Animais , Imageamento Tridimensional , Camundongos , Neurônios/citologia
6.
Biomed Opt Express ; 15(4): 2110-2113, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38633102

RESUMO

A feature issue is being presented by a team of guest editors containing papers based on contributed submissions including studies presented at Optics and the Brain, held April 24-27, 2023 as part of Optica Biophotonics Congress: Optics in the Life Sciences, in Vancouver, Canada.

7.
Neurophotonics ; 11(3): 034311, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38867758

RESUMO

Significance: Stimulated emission depletion (STED) is a powerful super-resolution microscopy technique that can be used for imaging live cells. However, the high STED laser powers can cause significant photobleaching and sample damage in sensitive biological samples. The dynamic intensity minimum (DyMIN) technique turns on the STED laser only in regions of the sample where there is fluorescence signal, thus saving significant sample photobleaching. The reduction in photobleaching allows higher resolution images to be obtained and longer time-lapse imaging of live samples. A stand-alone module to perform DyMIN is not available commercially. Aim: In this work, we developed an open-source design to implement three-step DyMIN on a STED microscope and demonstrated reduced photobleaching for timelapse imaging of beads, cells, and tissue. Approach: The DyMIN system uses a fast multiplexer circuit and inexpensive field-programmable gate array controlled by Labview software that operates as a stand-alone module for a STED microscope. All software and circuit diagrams are freely available. Results: We compared time-lapse images of bead samples using our custom DyMIN system to conventional STED and recorded a ∼ 46 % higher signal when using DyMIN after a 50-image sequence. We further demonstrated the DyMIN system for time-lapse STED imaging of live cells and brain tissue slices. Conclusions: Our open-source DyMIN system is an inexpensive add-on to a conventional STED microscope that can reduce photobleaching. The system can significantly improve signal to noise for dynamic time-lapse STED imaging of live samples.

8.
Nat Neurosci ; 27(5): 846-861, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38539013

RESUMO

The generation of new myelin-forming oligodendrocytes in the adult central nervous system is critical for cognitive function and regeneration following injury. Oligodendrogenesis varies between gray and white matter regions, suggesting that local cues drive regional differences in myelination and the capacity for regeneration. However, the layer- and region-specific regulation of oligodendrocyte populations is unclear due to the inability to monitor deep brain structures in vivo. Here we harnessed the superior imaging depth of three-photon microscopy to permit long-term, longitudinal in vivo three-photon imaging of the entire cortical column and subcortical white matter in adult mice. We find that cortical oligodendrocyte populations expand at a higher rate in the adult brain than those of the white matter. Following demyelination, oligodendrocyte replacement is enhanced in the white matter, while the deep cortical layers show deficits in regenerative oligodendrogenesis and the restoration of transcriptional heterogeneity. Together, our findings demonstrate that regional microenvironments regulate oligodendrocyte population dynamics and heterogeneity in the healthy and diseased brain.


Assuntos
Oligodendroglia , Substância Branca , Animais , Oligodendroglia/fisiologia , Camundongos , Substância Branca/fisiologia , Doenças Desmielinizantes/patologia , Bainha de Mielina/fisiologia , Camundongos Endogâmicos C57BL , Masculino , Camundongos Transgênicos , Regeneração Nervosa/fisiologia , Feminino , Encéfalo/fisiologia , Encéfalo/citologia , Neurogênese/fisiologia
9.
Biomed Opt Express ; 15(5): 3285-3300, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38855666

RESUMO

We demonstrate a novel electrowetting liquid combination using a room temperature ionic liquid (RTIL) and a nonpolar liquid, 1-phenyl-1-cyclohexene (PCH) suitable for focus-tunable 3-photon microscopy. We show that both liquids have over 90% transmission at 1300 nm over a 1.1 mm pathlength and an index of refraction contrast of 0.123. A lens using these liquids can be tuned from a contact angle of 133 to 48° with applied voltages of 0 and 60 V, respectively. Finally, a three-photon imaging system including an RTIL electrowetting lens was used to image a mouse brain slice. Axial scans taken with an electrowetting lens show excellent agreement with images acquired using a mechanically scanned objective.

10.
Curr Biol ; 34(4): 841-854.e4, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38325376

RESUMO

Sequential neural dynamics encoded by time cells play a crucial role in hippocampal function. However, the role of hippocampal sequential neural dynamics in associative learning is an open question. We used two-photon Ca2+ imaging of dorsal CA1 (dCA1) neurons in the stratum pyramidale (SP) in head-fixed mice performing a go-no go associative learning task to investigate how odor valence is temporally encoded in this area of the brain. We found that SP cells responded differentially to the rewarded or unrewarded odor. The stimuli were decoded accurately from the activity of the neuronal ensemble, and accuracy increased substantially as the animal learned to differentiate the stimuli. Decoding the stimulus from individual SP cells responding differentially revealed that decision-making took place at discrete times after stimulus presentation. Lick prediction decoded from the ensemble activity of cells in dCA1 correlated linearly with lick behavior. Our findings indicate that sequential activity of SP cells in dCA1 constitutes a temporal memory map used for decision-making in associative learning. VIDEO ABSTRACT.


Assuntos
Região CA1 Hipocampal , Hipocampo , Camundongos , Animais , Região CA1 Hipocampal/fisiologia , Neurônios/fisiologia , Aprendizagem , Condicionamento Clássico
11.
Biomed Opt Express ; 14(7): 3705-3725, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37497482

RESUMO

We demonstrate a gradient refractive index (GRIN) microendoscope with an outer diameter of ∼1.2 mm and a length of ∼186 mm that can fit into a stereotactic surgical cannula. Two photon imaging at an excitation wavelength of 900 nm showed a field of view of ∼180 microns and a lateral and axial resolution of 0.86 microns and 9.6 microns respectively. The microendoscope was tested by imaging autofluorescence and second harmonic generation (SHG) in label-free human brain tissue. Furthermore, preliminary image analysis indicates that image classification models can predict if an image is from the subthalamic nucleus or the surrounding tissue using conventional, bench-top two-photon autofluorescence.

12.
bioRxiv ; 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37961298

RESUMO

The generation of new myelin-forming oligodendrocytes in the adult CNS is critical for cognitive function and regeneration following injury. Oligodendrogenesis varies between gray and white matter regions suggesting that local cues drive regional differences in myelination and the capacity for regeneration. Yet, the determination of regional variability in oligodendrocyte cell behavior is limited by the inability to monitor the dynamics of oligodendrocytes and their transcriptional subpopulations in white matter of the living brain. Here, we harnessed the superior imaging depth of three-photon microscopy to permit long-term, longitudinal in vivo three-photon imaging of an entire cortical column and underlying subcortical white matter without cellular damage or reactivity. Using this approach, we found that the white matter generated substantially more new oligodendrocytes per volume compared to the gray matter, yet the rate of population growth was proportionally higher in the gray matter. Following demyelination, the white matter had an enhanced population growth that resulted in higher oligodendrocyte replacement compared to the gray matter. Finally, deep cortical layers had pronounced deficits in regenerative oligodendrogenesis and restoration of the MOL5/6-positive oligodendrocyte subpopulation following demyelinating injury. Together, our findings demonstrate that regional microenvironments regulate oligodendrocyte population dynamics and heterogeneity in the healthy and diseased brain.

13.
J Am Chem Soc ; 134(5): 2488-91, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22260720

RESUMO

Fluorescence resonance energy transfer (FRET)-based genetically encoded metal-ion sensors are important tools for studying metal-ion dynamics in live cells. We present a time-resolved microfluidic flow cytometer capable of characterizing the FRET-based dynamic response of metal-ion sensors in mammalian cells at a throughput of 15 cells/s with a time window encompassing a few milliseconds to a few seconds after mixing of cells with exogenous ligands. We have used the instrument to examine the cellular heterogeneity of Zn(2+) and Ca(2+) sensor FRET response amplitudes and demonstrated that the cluster maps of the Zn(2+) sensor FRET changes resolve multiple subpopulations. We have also measured the in vivo sensor response kinetics induced by changes in Zn(2+) and Ca(2+) concentrations. We observed an ∼30 fold difference between the extracellular and intracellular sensors.


Assuntos
Cálcio/química , Transferência Ressonante de Energia de Fluorescência , Ensaios de Triagem em Larga Escala , Zinco/química , Algoritmos , Células HeLa , Humanos , Íons/química
14.
Mol Vis ; 18: 1840-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22815637

RESUMO

PURPOSE: To demonstrate the ability of multiphoton microscopy to obtain full three-dimensional high-resolution images of the intact mouse eye anterior chamber without need for enucleation. METHODS: A custom multiphoton microscope was constructed and optimized for deep tissue imaging. Simultaneous two-photon autofluorescence (2PAF) and second harmonic generation (SHG) imaging were performed. A mouse holder and stereotaxic platform were designed to access different parts of the eye for imaging. A reservoir for keeping the eye moist was used during imaging sessions. RESULTS: Non-invasive multiphoton images deep inside the anterior chamber of the mouse eye were obtained without the need for enucleation. The iris, corneal epithelium and endothelium, trabecular meshwork region and conjunctiva were visualized by the 2PAF and SHG signals. Identification of the anatomy was achieved by the intrinsic properties of the native tissue without any exogenous labeling. Images as deep as 600 microns into the eye were clearly demonstrated. Full three-dimensional image reconstructions of the entire anterior chamber were performed and analyzed using custom software. CONCLUSIONS: Multiphoton imaging is a highly promising tool for ophthalmic research. We have demonstrated the ability to image the entire anterior chamber of the mouse eye in its native state. These results provide a foundation for future in vivo studies of the eye.


Assuntos
Imageamento Tridimensional , Microscopia de Fluorescência por Excitação Multifotônica , Animais , Câmara Anterior/anatomia & histologia , Túnica Conjuntiva/anatomia & histologia , Córnea/anatomia & histologia , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Iris/anatomia & histologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Esclera/anatomia & histologia , Malha Trabecular/anatomia & histologia
15.
Methods Mol Biol ; 2413: 193-209, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35044667

RESUMO

Raman spectroscopy using feature selection schemes has considerable advantages over gas chromatography for the analysis of fatty acids' composition changes. Here, we introduce an educational methodology to demonstrate the potential of micro-Raman spectroscopy to determine with high accuracy the unsaturation or saturation degrees and composition changes of the fatty acids found in the lipid droplets of the LNCaP prostate cancer cells that were treated with various fatty acids. The methodology uses highly discriminatory wavenumbers among fatty acids present in the sample selected by using the Support Vector Machine algorithm.


Assuntos
Gotículas Lipídicas , Neoplasias , Ácidos Graxos/química , Humanos , Gotículas Lipídicas/química , Masculino , Microscopia/métodos , Análise Espectral Raman/métodos , Máquina de Vetores de Suporte
16.
Neurophotonics ; 9(3): 031912, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35496497

RESUMO

Significance: Three-photon (3P) microscopy significantly increases the depth and resolution of in vivo imaging due to decreased scattering and nonlinear optical sectioning. Simultaneous excitation of multiple fluorescent proteins is essential to studying multicellular interactions and dynamics in the intact brain. Aim: We characterized the excitation laser pulses at a range of wavelengths for 3P microscopy, and then explored the application of tdTomato or mScarlet and EGFP for dual-color single-excitation structural 3P imaging deep in the living mouse brain. Approach: We used frequency-resolved optical gating to measure the spectral intensity, phase, and retrieved pulse widths at a range of wavelengths. Then, we performed in vivo single wavelength-excitation 3P imaging in the 1225- to 1360-nm range deep in the mouse cerebral cortex to evaluate the performance of tdTomato or mScarlet in combination with EGFP. Results: We find that tdTomato and mScarlet, expressed in oligodendrocytes and neurons respectively, have a high signal-to-background ratio in the 1300- to 1360-nm range, consistent with enhanced 3P cross-sections. Conclusions: These results suggest that a single excitation wavelength source is advantageous for multiple applications of dual-color brain imaging and highlight the importance of empirical characterization of individual fluorophores for 3P microscopy.

17.
Neurophotonics ; 9(4): 045009, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36466189

RESUMO

Significance: In vivo imaging and electrophysiology are powerful tools to explore neuronal function that each offer unique complementary information with advantages and limitations. Capturing both data types from the same neural population in the freely moving animal would allow researchers to take advantage of the capabilities of both modalities and further understand how they relate to each other. Aim: Here, we present a head-mounted neural implant suitable for in vivo two-photon imaging of neuronal activity with simultaneous extracellular electrical recording in head-fixed or fiber-coupled freely moving animals. Approach: A gradient refractive index (GRIN) lens-based head-mounted neural implant with extracellular electrical recording provided by tetrodes on the periphery of the GRIN lens was chronically implanted. The design of the neural implant allows for recording from head-fixed animals, as well as freely moving animals by coupling the imaging system to a coherent imaging fiber bundle. Results: We demonstrate simultaneous two-photon imaging of GCaMP and extracellular electrophysiology of neural activity in awake head-fixed and freely moving mice. Using the collected information, we perform correlation analysis to reveal positive correlation between optical and local field potential recordings. Conclusion: Simultaneously recording neural activity using both optical and electrical methods provides complementary information from each modality. Designs that can provide such bi-modal recording in freely moving animals allow for the investigation of neural activity underlying a broader range of behavioral paradigms.

18.
Biomed Opt Express ; 13(4): 2530-2541, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35519247

RESUMO

We present a high-resolution miniature, light-weight fluorescence microscope with electrowetting lens and onboard CMOS for high resolution volumetric imaging and structured illumination for rejection of out-of-focus and scattered light. The miniature microscope (SIMscope3D) delivers structured light using a coherent fiber bundle to obtain optical sectioning with an axial resolution of 18 µm. Volumetric imaging of eGFP labeled cells in fixed mouse brain tissue at depths up to 260 µm is demonstrated. The functionality of SIMscope3D to provide background free 3D imaging is shown by recording time series of microglia dynamics in awake mice at depths up to 120 µm in the brain.

19.
Mol Vis ; 17: 583-90, 2011 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-21386924

RESUMO

PURPOSE: To image the native (unfixed) human trabecular meshwork (TM) through the overlying sclera using a non-invasive, non-destructive technique. METHODS: Two-photon microscopic (2PM) methods, including two-photon autofluorescence (2PAF) and second harmonic generation (SHG), were used to image through the sclera of a human cadaver eye into the TM region. Multiple images were analyzed along the tissue axis (z-axis) to generate a three-dimensional (3D) model of the region. The tissue was subsequently fixed, paraffin embedded, and histological sections were photographed for comparison to the 2PM images. RESULTS: 3D analysis of multiple 2PM SHG images revealed an open region deep within the TM consistent with the location of Schlemm's canal (SC). Images of the scleral spur and surrounding tissues were also obtained. The SC, TM, scleral spur, and surrounding tissue images obtained with 2PM matched with histologically stained sections of the same tissue. CONCLUSIONS: 2PM imaging of the outflow system of the human eye documented collagenous structures solely from inherent optical properties. 2PM successfully imaged through the sclera into the SC/TM without the need for fixation, embedding, or histological processing. This work reveals that 2PM imaging has potential as a new metric for evaluating the aqueous outflow region of the human eye and is worthy of further exploration.


Assuntos
Imageamento Tridimensional/métodos , Esclera/citologia , Malha Trabecular/citologia , Idoso , Humanos , Masculino , Microscopia de Fluorescência por Excitação Multifotônica
20.
Mol Vis ; 17: 2628-33, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22025898

RESUMO

PURPOSE: To image the human trabecular meshwork (TM) using a non-invasive, non-destructive technique without the application of exogenous label. METHODS: Flat-mounted TM samples from a human cadaver eye were imaged using two nonlinear optical techniques: coherent anti-Stokes Raman scattering (CARS) and two-photon autofluorescence (TPAF). In TPAF, two optical photons are simultaneously absorbed and excite molecules in the sample that then emit a higher energy photon. The signal is predominately from collagen and elastin. The CARS technique uses two laser frequencies to specifically excite carbon-hydrogen bonds, allowing the visualization of lipid-rich cell membranes. Multiple images were taken along an axis perpendicular to the surface of the TM for subsequent analysis. RESULTS: Analysis of multiple TPAF images of the TM reveals the characteristic overlapping bundles of collagen of various sizes. Simultaneous CARS imaging revealed elliptical structures of ~7×10 µm in diameter populating the meshwork which were consistent with TM cells. Irregularly shaped objects of ~4 µm diameter appeared in both the TPAF and CARS channels, and are consistent with melanin granules. CONCLUSIONS: CARS techniques were successful in imaging live TM cells in freshly isolated human TM samples. Similar images have been obtained with standard histological techniques, however the method described here has the advantage of being performed on unprocessed, unfixed tissue free from the potential distortions of the fine tissue morphology that can occur due to infusion of fixatives and treatment with alcohols. CARS imaging of the TM represents a new avenue for exploring details of aqueous outflow and TM cell physiology.


Assuntos
Microscopia/métodos , Pseudofacia/patologia , Análise Espectral Raman/métodos , Malha Trabecular/ultraestrutura , Idoso de 80 Anos ou mais , Autopsia , Colágeno/análise , Elastina/análise , Fluorescência , Técnicas Histológicas/métodos , Humanos , Lasers , Melaninas/análise , Fótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA