Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Immunol Rev ; 303(1): 35-51, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34368957

RESUMO

The high rate of antibody production places considerable metabolic and folding stress on plasma cells (PC). Not surprisingly, they rely on the unfolded protein response (UPR), a universal signaling, and transcriptional network that monitors the health of the secretory pathway and mounts cellular responses to stress. Typically, the UPR utilizes three distinct stress sensors in the ER membrane, each regulating a subset of targets to re-establish homeostasis. PC use a specialized UPR scheme-they preemptively trigger the UPR via developmental signals and suppress two of the sensors, PERK and ATF6, relying on IRE1 alone. The specialized PC UPR program is tuned to the specific needs at every stage of development-from early biogenesis of secretory apparatus, to massive immunoglobulin expression later. Furthermore, the UPR in PC integrates with other pathways essential in a highly secretory cell-mTOR pathway that ensures efficient synthesis, autophagosomes that recycle components of the synthetic machinery, and apoptotic signaling that controls cell fate in the face of excessive folding stress. This specialized PC program is not shared with other secretory cells, for reasons yet to be defined. In this review, we give a perspective into how and why PC need such a unique UPR program.


Assuntos
Plasmócitos , eIF-2 Quinase , Estresse do Retículo Endoplasmático , Plasmócitos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Resposta a Proteínas não Dobradas , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
2.
FASEB J ; 37(12): e23283, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37983957

RESUMO

Activation of the endoplasmic reticulum (ER) stress sensor inositol-requiring enzyme-1α (IRE1α) contributes to neuronal development and is known to induce neuronal remodeling in vitro and in vivo. On the contrary, excessive IRE1 activity is often detrimental and may contribute to neurodegeneration. To determine the consequences of increased activation of IRE1α, we used a mouse model expressing a C148S variant of IRE1α with increased and sustained activation. Surprisingly, the mutation did not affect the differentiation of highly secretory antibody-producing cells but exhibited a beneficial effect in a mouse model of experimental autoimmune encephalomyelitis (EAE). Although mechanical allodynia was unaffected, significant improvement in motor function was found in IRE1C148S mice with EAE relative to wild type (WT) mice. Coincident with this improvement, there was reduced microgliosis in the spinal cord of IRE1C148S mice, with reduced expression of proinflammatory cytokine genes. This was accompanied by reduced axonal degeneration and enhanced 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) levels, suggesting improved myelin integrity. Interestingly, while the IRE1C148S mutation is expressed in all cells, the reduction in proinflammatory cytokines and in the microglial activation marker ionized calcium-binding adapter molecule (IBA1), along with preservation of phagocytic gene expression, all point to microglia as the cell type contributing to the clinical improvement in IRE1C148S animals. Our data suggest that sustained increase in IRE1α activity can be beneficial in vivo, and that this protection is cell type and context dependent. Considering the overwhelming but conflicting evidence for the role of ER stress in neurological diseases, a better understanding of the function of ER stress sensors in physiological contexts is clearly needed.


Assuntos
Encefalomielite Autoimune Experimental , Camundongos , Animais , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Estresse do Retículo Endoplasmático/genética , Microglia/metabolismo
3.
J Biol Chem ; 296: 100781, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34000298

RESUMO

The unfolded protein response plays an evolutionarily conserved role in homeostasis, and its dysregulation often leads to human disease, including diabetes and cancer. IRE1α is a major transducer that conveys endoplasmic reticulum stress via biochemical signals, yet major gaps persist in our understanding of how the detection of stress is converted to one of several molecular outcomes. It is known that, upon sensing unfolded proteins via its endoplasmic reticulum luminal domain, IRE1α dimerizes and then oligomerizes (often visualized as clustering). Once assembled, the kinase domain trans-autophosphorylates a neighboring IRE1α, inducing a conformational change that activates the RNase effector domain. However, the full details of how the signal is transmitted are not known. Here, we describe a previously unrecognized role for helix αK, located between the kinase and RNase domains of IRE1α, in conveying this critical conformational change. Using constructs containing mutations within this interdomain helix, we show that distinct substitutions affect oligomerization, kinase activity, and the RNase activity of IRE1α differentially. Furthermore, using both biochemical and computational methods, we found that different residues at position 827 specify distinct conformations at distal sites of the protein, such as in the RNase domain. Of importance, an RNase-inactive mutant, L827P, can still dimerize with wildtype monomers, but this mutation inactivates the wildtype molecule and renders leukemic cells more susceptible to stress. We surmise that helix αK is a conduit for the activation of IRE1α in response to stress.


Assuntos
Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Linhagem Celular , Endorribonucleases/química , Humanos , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Multimerização Proteica , Proteínas Serina-Treonina Quinases/química , Ribonucleases/metabolismo
4.
PLoS Biol ; 17(3): e3000196, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30908491

RESUMO

Differentiation of secretory cells leads to sharp increases in protein synthesis, challenging endoplasmic reticulum (ER) proteostasis. Anticipatory activation of the unfolded protein response (UPR) prepares cells for the onset of secretory function by expanding the ER size and folding capacity. How cells ensure that the repertoire of induced chaperones matches their postdifferentiation folding needs is not well understood. We find that during differentiation of stem-like seam cells, a typical UPR target, the Caenorhabditis elegans immunoglobulin heavy chain-binding protein (BiP) homologue Heat-Shock Protein 4 (HSP-4), is selectively induced in alae-secreting daughter cells but is repressed in hypodermal daughter cells. Surprisingly, this lineage-dependent induction bypasses the requirement for UPR signaling. Instead, its induction in alae-secreting cells is controlled by a specific developmental program, while its repression in the hypodermal-fated cells requires a transcriptional regulator B-Lymphocyte-Induced Maturation Protein 1 (BLMP-1/BLIMP1), involved in differentiation of mammalian secretory cells. The HSP-4 induction is anticipatory and is required for the integrity of secreted alae. Thus, differentiation programs can directly control a broad-specificity chaperone that is normally stress dependent to ensure the integrity of secreted proteins.


Assuntos
Proteínas de Choque Térmico/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Animais , Linfócitos B/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Resposta a Proteínas não Dobradas/genética
5.
Mol Cell ; 53(4): 562-576, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24508390

RESUMO

The response to endoplasmic reticulum (ER) stress relies on activation of unfolded protein response (UPR) sensors, and the outcome of the UPR depends on the duration and strength of signal. Here, we demonstrate a mechanism that attenuates the activity of the UPR sensor inositol-requiring enzyme 1α (IRE1α). A resident ER protein disulfide isomerase, PDIA6, limits the duration of IRE1α activity by direct binding to cysteine 148 in the lumenal domain of the sensor, which is oxidized when IRE1 is activated. PDIA6-deficient cells hyperrespond to ER stress with sustained autophosphorylation of IRE1α and splicing of XBP1 mRNA, resulting in exaggerated upregulation of UPR target genes and increased apoptosis. In vivo, PDIA6-deficient C. elegans exhibits constitutive UPR and fails to complete larval development, a program that normally requires the UPR. Thus, PDIA6 activity provides a mechanism that limits UPR signaling and maintains it within a physiologically appropriate range.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Regulação Enzimológica da Expressão Gênica , Isomerases de Dissulfetos de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Células 3T3 , Sequência de Aminoácidos , Animais , Proteínas de Transporte/metabolismo , Proliferação de Células , Cisteína/química , Dissulfetos/química , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Inositol/química , Camundongos , Dados de Sequência Molecular , Oxigênio/química , Fosforilação , Desnaturação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais
6.
PLoS Genet ; 12(12): e1006450, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27926939

RESUMO

Misfolded proteins in transgenic models of conformational diseases interfere with proteostasis machinery and compromise the function of many structurally and functionally unrelated metastable proteins. This collateral damage to cellular proteins has been termed 'bystander' mechanism. How a single misfolded protein overwhelms the proteostasis, and how broadly-expressed mutant proteins cause cell type-selective phenotypes in disease are open questions. We tested the gain-of-function mechanism of a R37C folding mutation in an endogenous IGF-like C.elegans protein DAF-28. DAF-28(R37C) is broadly expressed, but only causes dysfunction in one specific neuron, ASI, leading to a distinct developmental phenotype. We find that this phenotype is caused by selective disruption of normal biogenesis of an unrelated endogenous protein, DAF-7/TGF-ß. The combined deficiency of DAF-28 and DAF-7 biogenesis, but not of DAF-28 alone, explains the gain-of-function phenotype-deficient pro-growth signaling by the ASI neuron. Using functional, fluorescently-tagged protein, we find that, in animals with mutant DAF-28/IGF, the wild-type DAF-7/TGF-ß is mislocalized to and accumulates in the proximal axon of the ASI neuron. Activation of two different branches of the unfolded protein response can modulate both the developmental phenotype and DAF-7 mislocalization in DAF-28(R37C) animals, but appear to act through divergent mechanisms. Our finding that bystander targeting of TGF-ß explains the phenotype caused by a folding mutation in an IGF-like protein suggests that, in conformational diseases, bystander misfolding may specify the distinct phenotypes caused by different folding mutations.


Assuntos
Efeito Espectador/genética , Proteínas de Caenorhabditis elegans/genética , Insulinas/genética , Dobramento de Proteína , Fator de Crescimento Transformador beta/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/biossíntese , Proteínas de Caenorhabditis elegans/química , Regulação da Expressão Gênica no Desenvolvimento , Insulinas/biossíntese , Insulinas/química , Larva/genética , Larva/crescimento & desenvolvimento , Mutação , Neurônios/metabolismo , Neurônios/patologia , Fenótipo , Receptor de Insulina/genética , Fator de Crescimento Transformador beta/biossíntese , Fator de Crescimento Transformador beta/química
7.
Adv Exp Med Biol ; 847: 45-72, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25916585

RESUMO

Because aging is a multifactorial, pleiotropic process where many interacting mechanisms contribute to the organismal decline, the candidate gene approach rarely provides a clear message. This chapter discusses some of the inherent complexity, focusing on aspects that impinge upon protein homeostasis and maintain a healthy proteome. We discuss candidate genes that operate in these pathways, and compare their actions in invertebrates, mice and humans. We highlight several themes that emerge from recent research­the interconnections of pathways that regulate aging, the pleiotropic effects of mutations and other manipulations of the candidate proteins and the tissue specificity in these pleiotropic outcomes. This body of knowledge highlights the need for multiple specific readouts of manipulating longevity genes, beyond measuring lifespan, as well as the need to understand the integrated picture, beyond examining the immediate outputs of individual longevity pathways.


Assuntos
Envelhecimento/genética , Homeostase , Proteínas/metabolismo , Animais , Humanos , Longevidade/genética , Dobramento de Proteína , Sirtuínas/fisiologia , Somatomedinas/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Proteína Supressora de Tumor p53/fisiologia
8.
Biochim Biophys Acta ; 1833(11): 2410-24, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23507200

RESUMO

The endoplasmic reticulum is a major compartment of protein biogenesis in the cell, dedicated to production of secretory, membrane and organelle proteins. The secretome has distinct structural and post-translational characteristics, since folding in the ER occurs in an environment that is distinct in terms of its ionic composition, dynamics and requirements for quality control. The folding machinery in the ER therefore includes chaperones and folding enzymes that introduce, monitor and react to disulfide bonds, glycans, and fluctuations of luminal calcium. We describe the major chaperone networks in the lumen and discuss how they have distinct modes of operation that enable cells to accomplish highly efficient production of the secretome. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.


Assuntos
Retículo Endoplasmático/metabolismo , Chaperonas Moleculares , Dobramento de Proteína , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , Animais , Humanos , Biossíntese de Proteínas , Transporte Proteico
9.
BMC Biol ; 11: 100, 2013 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-24079614

RESUMO

BACKGROUND: Monogenic gain-of-function protein aggregation diseases, including Huntington's disease, exhibit substantial variability in age of onset, penetrance, and clinical symptoms, even between individuals with similar or identical mutations. This difference in phenotypic expression of proteotoxic mutations is proposed to be due, at least in part, to the variability in genetic background. To address this, we examined the role of natural variation in defining the susceptibility of genetically diverse individuals to protein aggregation and toxicity, using the Caenorhabditis elegans polyglutamine model. RESULTS: Introgression of polyQ40 into three wild genetic backgrounds uncovered wide variation in onset of aggregation and corresponding toxicity, as well as alteration in the cell-specific susceptibility to aggregation. To further dissect these relationships, we established a panel of 21 recombinant inbred lines that showed a broad range of aggregation phenotypes, independent of differences in expression levels. We found that aggregation is a transgressive trait, and does not always correlate with measures of toxicity, such as early onset of muscle dysfunction, egg-laying deficits, or reduced lifespan. Moreover, distinct measures of proteotoxicity were independently modified by the genetic background. CONCLUSIONS: Resistance to protein aggregation and the ability to restrict its associated cellular dysfunction are independently controlled by the natural variation in genetic background, revealing important new considerations in the search for targets for therapeutic intervention in conformational diseases. Thus, our C. elegans model can serve as a powerful tool to dissect the contribution of natural variation to individual susceptibility to proteotoxicity.Please see related commentary by Kaeberlein, http://www.biomedcentral.com/1741-7007/11/102.


Assuntos
Caenorhabditis elegans/genética , Modelos Animais de Doenças , Variação Genética , Doenças Neurodegenerativas/genética , Peptídeos/genética , Alelos , Animais , Proteínas de Caenorhabditis elegans/genética
10.
bioRxiv ; 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37131811

RESUMO

Activation of the ER stress sensor IRE1α contributes to neuronal development and is known to induce neuronal remodeling in vitro and in vivo. On the other hand, excessive IRE1 activity is often detrimental and may contribute to neurodegeneration. To determine the consequences of increased activation of IRE1α, we used a mouse model expressing a C148S variant of IRE1α with increased and sustained activation. Surprisingly, the mutation did not affect the differentiation of highly secretory antibody-producing cells, but exhibited a strong protective effect in a mouse model of experimental autoimmune encephalomyelitis (EAE). Significant improvement in motor function was found in IRE1C148S mice with EAE relative to WT mice. Coincident with this improvement, there was reduced microgliosis in the spinal cord of IRE1C148S mice, with reduced expression of pro-inflammatory cytokine genes. This was accompanied by reduced axonal degeneration and enhanced CNPase levels, suggestiing improved myelin integrity. Interestingly, while the IRE1C148S mutation is expressed in all cells, the reduction in proinflammatory cytokines and in the activation of microglial activation marker IBA1, along with preservation of phagocytic gene expression, all point to microglia as the cell type contributing to the clinical improvement in IRE1C148S animals. Our data suggest that sustained increase in IRE1α activity can be protective in vivo, and that this protection is cell type and context dependent. Considering the overwhelming but conflicting evidence for the role of the ER stress in neurological diseases, a better understanding of the function of ER stress sensors in physiological contexts is clearly needed.

11.
PLoS Genet ; 5(3): e1000399, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19266020

RESUMO

Genetic background exerts a strong modulatory effect on the toxicity of aggregation-prone proteins in conformational diseases. In addition to influencing the misfolding and aggregation behavior of the mutant proteins, polymorphisms in putative modifier genes may affect the molecular processes leading to the disease phenotype. Mutations in SOD1 in a subset of familial amyotrophic lateral sclerosis (ALS) cases confer dominant but clinically variable toxicity, thought to be mediated by misfolding and aggregation of mutant SOD1 protein. While the mechanism of toxicity remains unknown, both the nature of the SOD1 mutation and the genetic background in which it is expressed appear important. To address this, we established a Caenorhabditis elegans model to systematically examine the aggregation behavior and genetic interactions of mutant forms of SOD1. Expression of three structurally distinct SOD1 mutants in C. elegans muscle cells resulted in the appearance of heterogeneous populations of aggregates and was associated with only mild cellular dysfunction. However, introduction of destabilizing temperature-sensitive mutations into the genetic background strongly enhanced the toxicity of SOD1 mutants, resulting in exposure of several deleterious phenotypes at permissive conditions in a manner dependent on the specific SOD1 mutation. The nature of the observed phenotype was dependent on the temperature-sensitive mutation present, while its penetrance reflected the specific combination of temperature-sensitive and SOD1 mutations. Thus, the specific toxic phenotypes of conformational disease may not be simply due to misfolding/aggregation toxicity of the causative mutant proteins, but may be defined by their genetic interactions with cellular pathways harboring mildly destabilizing missense alleles.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Caenorhabditis elegans/genética , Expressão Gênica , Mutação , Polimorfismo Genético , Superóxido Dismutase/toxicidade , Esclerose Lateral Amiotrófica/genética , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/toxicidade , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Humanos , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas Luminescentes/toxicidade , Células Musculares/efeitos dos fármacos , Células Musculares/metabolismo , Fenótipo , Dobramento de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/toxicidade , Superóxido Dismutase/química , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Temperatura
12.
J Gerontol A Biol Sci Med Sci ; 77(2): 268-275, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34610126

RESUMO

To explore the role of the small heat shock protein beta 1 (HspB1, also known as Hsp25 in rodents and Hsp27 in humans) in longevity, we created a Caenorhabiditis elegans model with a high level of ubiquitous expression of the naked mole-rat HspB1 protein. The worms showed increased life span under multiple conditions and also increased resistance to heat stress. RNAi experiments suggest that HspB1-induced life extension is dependent on the transcription factors skn-1 (Nrf2) and hsf-1 (Hsf1). RNAseq from HspB1 worms showed an enrichment in several skn-1 target genes, including collagen proteins and lysosomal genes. Expression of HspB1 also improved functional outcomes regulated by SKN-1, specifically oxidative stress resistance and pharyngeal integrity. This work is the first to link a small heat shock protein with collagen function, suggesting a novel role for HspB1 as a hub between canonical heat response signaling and SKN-1 transcription.


Assuntos
Proteínas de Caenorhabditis elegans , Longevidade , Animais , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Resposta ao Choque Térmico/genética , Longevidade/genética , Estresse Oxidativo/fisiologia
13.
Adv Exp Med Biol ; 694: 138-59, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20886762

RESUMO

The stability of the proteome is crucial to the health of the cell, and contributes significantly to the lifespan of the organism. Aging and many age-related diseases have in common the expression of misfolded and damaged proteins. The chronic expression of damaged proteins during disease can have devastating consequences on protein homeostasis (proteostasis), resulting in disruption ofnumerous biological processes. This chapter discusses our current understanding of the various contributors to protein misfolding, and the mechanisms by which misfolding, and accompanied aggregation/toxicity, is accelerated by stress and aging. Invertebrate models have been instrumental in studying the processes related to aggregation and toxicity of disease-associated proteins and how dysregulation ofproteostasis leads to neurodegenerative diseases of aging.


Assuntos
Envelhecimento/patologia , Envelhecimento/fisiologia , Homeostase , Modelos Biológicos , Doenças Neurodegenerativas/genética , Proteínas/química , Proteínas/metabolismo , Animais , Humanos , Doenças Neurodegenerativas/patologia , Conformação Proteica , Dobramento de Proteína
14.
Mol Biol Cell ; 18(10): 3764-75, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17634284

RESUMO

Because only few of its client proteins are known, the physiological roles of the endoplasmic reticulum chaperone glucose-regulated protein 94 (GRP94) are poorly understood. Using targeted disruption of the murine GRP94 gene, we show that it has essential functions in embryonic development. grp94-/- embryos die on day 7 of gestation, fail to develop mesoderm, primitive streak, or proamniotic cavity. grp94-/- ES cells grow in culture and are capable of differentiation into cells representing all three germ layers. However, these cells do not differentiate into cardiac, smooth, or skeletal muscle. Differentiation cultures of mutant ES cells are deficient in secretion of insulin-like growth factor II and their defect can be complemented with exogenous insulin-like growth factors I or II. The data identify insulin-like growth factor II as one developmentally important protein whose production depends on the activity of GRP94.


Assuntos
Fator de Crescimento Insulin-Like II/metabolismo , Glicoproteínas de Membrana/metabolismo , Mesoderma/metabolismo , Desenvolvimento Muscular/fisiologia , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Diferenciação Celular , Células Cultivadas , Perda do Embrião , Desenvolvimento Embrionário , Células-Tronco Embrionárias/citologia , Estruturas Embrionárias/citologia , Gástrula/citologia , Deleção de Genes , Marcação de Genes , Heterozigoto , Homozigoto , Fator de Crescimento Insulin-Like II/deficiência , Glicoproteínas de Membrana/genética , Camundongos , Fenótipo
15.
Biochem J ; 405(2): 233-41, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17411420

RESUMO

GRP94 (glucose-regulated protein of 94 kDa) is a major luminal constituent of the endoplasmic reticulum with known high capacity for calcium in vivo and a peptide-binding activity in vitro. In the present study, we show that Ca2+ regulates the ability of GRP94 to bind peptides. This effect is due to a Ca2+-binding site located in the charged linker domain of GRP94, which, when occupied, enhances the association of peptides with the peptide-binding site in the N-terminal domain of the protein. We further show that grp94-/- cells are hypersensitive to perturbation of intracellular calcium and thus GRP94 is important for cellular Ca2+ storage.


Assuntos
Cálcio/fisiologia , Glicoproteínas de Membrana/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular , Camundongos , Spodoptera
16.
Cell Rep ; 22(12): 3115-3125, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29562168

RESUMO

Genetic instability of the mitochondrial genome (mtDNA) plays an important role in human aging and disease. Thus far, it has proven difficult to develop successful treatment strategies for diseases that are caused by mtDNA instability. To address this issue, we developed a model of mtDNA disease in the nematode C. elegans, an animal model that can rapidly be screened for genes and biological pathways that reduce mitochondrial pathology. These worms recapitulate all the major hallmarks of mtDNA disease in humans, including increased mtDNA instability, loss of respiration, reduced neuromuscular function, and a shortened lifespan. We found that these phenotypes could be rescued by intervening in numerous biological pathways, including IGF-1/insulin signaling, mitophagy, and the mitochondrial unfolded protein response, suggesting that it may be possible to ameliorate mtDNA disease through multiple molecular mechanisms.


Assuntos
Caenorhabditis elegans/metabolismo , DNA Mitocondrial/genética , Mitocôndrias/metabolismo , Animais , Progressão da Doença , Camundongos , Modelos Animais
18.
Artigo em Inglês | MEDLINE | ID: mdl-21536706

RESUMO

Organisms survive changes in the environment by altering their rates of metabolism, growth, and reproduction. At the same time, the system must ensure the stability and functionality of its macromolecules. Fluctuations in the environment are sensed by highly conserved stress responses and homeostatic mechanisms, and of these, the heat shock response (HSR) represents an essential response to acute and chronic proteotoxic damage. However, unlike the strategies employed to maintain the integrity of the genome, protection of the proteome must be tailored to accommodate the normal flux of nonnative proteins and the differences in protein composition between cells, and among individuals. Moreover, adult cells are likely to have significant differences in the rates of synthesis and clearance that are influenced by intrinsic errors in protein expression, genetic polymorphisms, and fluctuations in physiological and environmental conditions. Here, we will address how protein homeostasis (proteostasis) is achieved at the level of the cell and organism, and how the threshold of the stress response is set to detect and combat protein misfolding. For metazoans, the requirement for coordinated function and growth imposes additional constraints on the detection, signaling, and response to misfolding, and requires that the HSR is integrated into various aspects of organismal physiology, such as lifespan. This is achieved by hierarchical regulation of heat shock factor 1 (HSF1) by the metabolic state of the cell and centralized neuronal control that could allow optimal resource allocation between cells and tissues. We will examine how protein folding quality control mechanisms in individual cells may be integrated into a multicellular level of control, and further, even custom-designed to support individual variability and impose additional constraints on evolutionary adaptation.


Assuntos
Resposta ao Choque Térmico , Dobramento de Proteína , Proteoma , Animais , Variação Genética , Proteínas de Choque Térmico/metabolismo , Homeostase , Humanos , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/fisiologia , Transdução de Sinais
19.
Curr Opin Struct Biol ; 20(1): 23-32, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20053547

RESUMO

The inherently error-prone nature of protein biosynthesis and turnover leads to a constant flux of destabilized proteins. Genetic mutations in conformational disease-associated proteins, as well as exposure to acute and chronic proteotoxic stresses, further increase the load of misfolded protein on the proteostasis network. During aging, this leads to enhanced instability of the proteome, failure to buffer destabilizing genetic mutations or polymorphisms, and cellular decline. The combination of cell-type-specific differences in the buffering capacity of the proteostasis network and destabilizing polymorphisms in the genetic background may account for some of the cell-type specificity observed in disease, even when the predominant disease-associated protein is widely expressed.


Assuntos
Células/metabolismo , Doença/genética , Homeostase , Proteínas/genética , Proteínas/metabolismo , Animais , Células/patologia , Humanos , Chaperonas Moleculares/metabolismo , Conformação Proteica , Proteínas/química
20.
Hum Mol Genet ; 16(9): 1078-90, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17360721

RESUMO

Huntington's disease (HD) is caused by an expanded polyglutamine tract in the huntingtin protein. Mitochondrial dysfunction and free radical damage occur in both R6/2 mice and HD patient brains and might play a role in disease pathogenesis. In cell culture systems, heat-shock protein 27 (Hsp27), a small molecular chaperone, suppresses mutant huntingtin-induced reactive oxygen species formation and cell death. To investigate this in vivo, we conducted an extensive phenotypic characterization of mice arising from a cross between R6/2 mice and Hsp27 transgenic mice but did not observe an improvement of the R6/2 phenotype. Hsp27 overexpression had no effect in reducing oxidative stress in the R6/2 brain, assessed by measuring striatal aconitase activity and protein carbonylation levels. Native protein gel analysis revealed that transgenic Hsp27 forms active, large oligomeric species in heat-shocked brain lysates, demonstrating that it is efficiently activated upon stress. In contrast, Hsp27 in double transgenic brains exists predominantly as a low molecular weight, inactive species. This suggests that Hsp27, which is otherwise activatable upon heat shock, remains inactive in the R6/2 model of chronic neurodegeneration. Hsp27 transgenics had been previously shown to be protected from acute stresses such as kainate administration, ischemia/reperfusion heart injury and neonatal nerve injury. Our study is the first to suggest a differential modulation of Hsp27 activation in vivo and, importantly, it illustrates the diverse effect of Hsp27 on acute versus chronic models of disease.


Assuntos
Proteínas de Choque Térmico/genética , Doença de Huntington/genética , Degeneração Neural/genética , Aconitato Hidratase/metabolismo , Animais , Comportamento Animal , Western Blotting , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Expressão Gênica , Genótipo , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico/genética , Resposta ao Choque Térmico/fisiologia , Doença de Huntington/metabolismo , Doença de Huntington/fisiopatologia , Imuno-Histoquímica , Imunoprecipitação , Corpos de Inclusão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Camundongos Transgênicos , Degeneração Neural/metabolismo , Degeneração Neural/fisiopatologia , Estresse Oxidativo , Fenótipo , Transglutaminases/genética , Transglutaminases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA