Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
N Engl J Med ; 389(8): 722-732, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37611122

RESUMO

BACKGROUND: Partial resistance of Plasmodium falciparum to the artemisinin component of artemisinin-based combination therapies, the most important malaria drugs, emerged in Southeast Asia and now threatens East Africa. Partial resistance, which manifests as delayed clearance after therapy, is mediated principally by mutations in the kelch protein K13 (PfK13). Limited longitudinal data are available on the emergence and spread of artemisinin resistance in Africa. METHODS: We performed annual surveillance among patients who presented with uncomplicated malaria at 10 to 16 sites across Uganda from 2016 through 2022. We sequenced the gene encoding kelch 13 (pfk13) and analyzed relatedness using molecular methods. We assessed malaria metrics longitudinally in eight Ugandan districts from 2014 through 2021. RESULTS: By 2021-2022, the prevalence of parasites with validated or candidate resistance markers reached more than 20% in 11 of the 16 districts where surveillance was conducted. The PfK13 469Y and 675V mutations were seen in far northern Uganda in 2016-2017 and increased and spread thereafter, reaching a combined prevalence of 10 to 54% across much of northern Uganda, with spread to other regions. The 469F mutation reached a prevalence of 38 to 40% in one district in southwestern Uganda in 2021-2022. The 561H mutation, previously described in Rwanda, was first seen in southwestern Uganda in 2021, reaching a prevalence of 23% by 2022. The 441L mutation reached a prevalence of 12 to 23% in three districts in western Uganda in 2022. Genetic analysis indicated local emergence of mutant parasites independent of those in Southeast Asia. The emergence of resistance was observed predominantly in areas where effective malaria control had been discontinued or transmission was unstable. CONCLUSIONS: Data from Uganda showed the emergence of partial resistance to artemisinins in multiple geographic locations, with increasing prevalence and regional spread over time. (Funded by the National Institutes of Health.).


Assuntos
Artemisininas , Resistência a Medicamentos , Malária , Parasitos , Proteínas de Protozoários , Animais , Humanos , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Benchmarking , Parasitos/efeitos dos fármacos , Parasitos/genética , Uganda/epidemiologia , Resistência a Medicamentos/genética , Malária/tratamento farmacológico , Malária/genética , Malária/parasitologia , Proteínas de Protozoários/genética
2.
J Infect Dis ; 229(4): 959-968, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37992117

RESUMO

BACKGROUND: Recent data indicate that non-Plasmodium falciparum species may be more prevalent than thought in sub-Saharan Africa. Although Plasmodium malariae, Plasmodium ovale spp., and Plasmodium vivax are less severe than P. falciparum, treatment and control are more challenging, and their geographic distributions are not well characterized. METHODS: We randomly selected 3284 of 12 845 samples collected from cross-sectional surveys in 100 health facilities across 10 regions of Mainland Tanzania and performed quantitative real-time PCR to determine presence and parasitemia of each malaria species. RESULTS: P. falciparum was most prevalent, but P. malariae and P. ovale were found in all but 1 region, with high levels (>5%) of P. ovale in 7 regions. The highest P. malariae positivity rate was 4.5% in Mara and 8 regions had positivity rates ≥1%. We only detected 3 P. vivax infections, all in Kilimanjaro. While most nonfalciparum malaria-positive samples were coinfected with P. falciparum, 23.6% (n = 13 of 55) of P. malariae and 14.7% (n = 24 of 163) of P. ovale spp. were monoinfections. CONCLUSIONS: P. falciparum remains by far the largest threat, but our data indicate that malaria elimination efforts in Tanzania will require increased surveillance and improved understanding of the biology of nonfalciparum species.


Assuntos
Malária Falciparum , Malária , Humanos , Tanzânia/epidemiologia , Estudos Transversais , Malária/epidemiologia , Malária Falciparum/epidemiologia , Plasmodium malariae/genética
3.
J Infect Dis ; 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39367758

RESUMO

BACKGROUND: In Africa, the first Plasmodium falciparum artemisinin partial resistance mutation, was Kelch13 (K13) 561H - detected and validated at appreciable frequency in Rwanda in 2014. Surveillance to better define the extent of the emergence in Rwanda and neighboring countries is critical. METHODS: We used novel liquid blood drop preservation combined with pooled sequencing to provide cost-effective rapid assessment of resistance mutation frequencies at multiple collection sites across Rwanda and neighboring regions in Uganda, Tanzania, and the Democratic Republic of the Congo (DRC). Malaria-positive samples (n=5,465) from 39 health facilities collected between May 2022 and March 2023 were sequenced in 199 pools. RESULTS: In Rwanda, K13 561H and 675V were detected in 90% and 65% of sites with an average frequency of 19.0% (0-54.5%) and 5.0% (0-35.5%), respectively. In Tanzania, 561H had high frequency in multiple sites. 561H appeared at 1.6% in Uganda. 561H was absent from the DRC, although 675V was seen at low frequency. Concerningly candidate mutations were observed: 441L, 449A, and 469F co-occurred with validated mutations suggesting they are arising under the same pressures. Other markers for decreased susceptibility to artemether-lumefantrine are common: P. falciparum multidrug resistance protein 1 N86 at 98.0% (63.3-100%) and 184F at 47.0% (0-94.3%) and P. falciparum chloroquine resistance transporter 76T at 14.7% (0-58.6%). Additionally, sulfadoxine-pyrimethamine-associated mutations show high frequencies. CONCLUSION: K13 mutations are rapidly expanding in the region further endangering control efforts with the potential of engendering partner drug resistance.

4.
Antimicrob Agents Chemother ; 68(9): e0046624, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39136468

RESUMO

Novel antimalarials are urgently needed to combat rising resistance to available drugs. The imidazolopiperazine ganaplacide is a promising drug candidate, but decreased susceptibility of laboratory strains has been linked to polymorphisms in the Plasmodium falciparum cyclic amine resistance locus (PfCARL), acetyl-CoA transporter (PfACT), and UDP-galactose transporter (PfUGT). To characterize parasites causing disease in Africa, we assessed ex vivo drug susceptibilities to ganaplacide in 750 P. falciparum isolates collected in Uganda from 2017 to 2023. Drug susceptibilities were assessed using a 72-hour SYBR Green growth inhibition assay. The median IC50 for ganaplacide was 13.8 nM, but some isolates had up to 31-fold higher IC50s (31/750 with IC50 > 100 nM). To assess genotype-phenotype associations, we sequenced genes potentially mediating altered ganaplacide susceptibility in the isolates using molecular inversion probe and dideoxy sequencing methods. PfCARL was highly polymorphic, with eight mutations present in >5% of isolates. None of these eight mutations had previously been selected in laboratory strains with in vitro drug pressure and none were found to be significantly associated with decreased ganaplacide susceptibility. Mutations in PfACT and PfUGT were found in ≤5% of isolates, except for two frequent (>20%) mutations in PfACT; one mutation in PfACT (I140V) was associated with a modest decrease in susceptibility. Overall, Ugandan P. falciparum isolates were mostly highly susceptible to ganaplacide. Known resistance mediators were polymorphic, but mutations previously selected with in vitro drug pressure were not seen, and mutations identified in the Ugandan isolates were generally not associated with decreased ganaplacide susceptibility.


Assuntos
Antimaláricos , Resistência a Medicamentos , Plasmodium falciparum , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Antimaláricos/farmacologia , Uganda , Humanos , Resistência a Medicamentos/genética , Malária Falciparum/parasitologia , Malária Falciparum/tratamento farmacológico , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Concentração Inibidora 50 , Piperazinas/farmacologia , Testes de Sensibilidade Parasitária
5.
Malar J ; 23(1): 150, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755607

RESUMO

BACKGROUND: Emerging artemisinin partial resistance and diagnostic resistance are a threat to malaria control in Africa. Plasmodium falciparum kelch13 (k13) propeller-domain mutations that confer artemisinin partial resistance have emerged in Africa. k13-561H was initially described at a frequency of 7.4% from Masaka in 2014-2015, but not present in nearby Rukara. By 2018, 19.6% of isolates in Masaka and 22% of isolates in Rukara contained the mutation. Longitudinal monitoring is essential to inform control efforts. In Rukara, an assessment was conducted to evaluate recent k13-561H prevalence changes, as well as other key mutations. Prevalence of hrp2/3 deletions was also assessed. METHODS: Samples collected in Rukara in 2021 were genotyped for key artemisinin and partner drug resistance mutations using molecular inversion probe assays and for hrp2/3 deletions using qPCR. RESULTS: Clinically validated k13 artemisinin partial resistance mutations continue to increase in prevalence with the overall level of mutant infections reaching 32% in Rwanda. The increase appears to be due to the rapid emergence of k13-675V (6.4%, 6/94 infections), previously not observed, rather than continued expansion of 561H (23.5% 20/85). Mutations to partner drugs and other anti-malarials were variable, with high levels of multidrug resistance 1 (mdr1) N86 (95.5%) associated with lumefantrine decreased susceptibility and dihydrofolate reductase (dhfr) 164L (24.7%) associated with a high level of antifolate resistance, but low levels of amodiaquine resistance polymorphisms with chloroquine resistance transporter (crt) 76T: at 6.1% prevalence. No hrp2 or hrp3 gene deletions associated with diagnostic resistance were found. CONCLUSIONS: Increasing prevalence of artemisinin partial resistance due to k13-561H and the rapid expansion of k13-675V is concerning for the longevity of artemisinin effectiveness in the region. False negative RDT results do not appear to be an issue with no hrp2 or hpr3 deletions detected. Continued molecular surveillance in this region and surrounding areas is needed to follow artemisinin partial resistance and provide early detection of partner drug resistance, which would likely compromise control and increase malaria morbidity and mortality in East Africa.


Assuntos
Antimaláricos , Artemisininas , Resistência a Medicamentos , Malária Falciparum , Mutação , Plasmodium falciparum , Proteínas de Protozoários , Plasmodium falciparum/genética , Plasmodium falciparum/efeitos dos fármacos , Artemisininas/farmacologia , Antimaláricos/farmacologia , Proteínas de Protozoários/genética , Resistência a Medicamentos/genética , Ruanda , Malária Falciparum/parasitologia , Malária Falciparum/epidemiologia , Humanos , Antígenos de Protozoários/genética , Prevalência , Criança , Adulto Jovem , Adolescente , Adulto , Pré-Escolar
6.
Malar J ; 23(1): 139, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720288

RESUMO

BACKGROUND: In 2021 and 2023, the World Health Organization approved RTS,S/AS01 and R21/Matrix M malaria vaccines, respectively, for routine immunization of children in African countries with moderate to high transmission. These vaccines are made of Plasmodium falciparum circumsporozoite protein (PfCSP), but polymorphisms in the gene raise concerns regarding strain-specific responses and the long-term efficacy of these vaccines. This study assessed the Pfcsp genetic diversity, population structure and signatures of selection among parasites from areas of different malaria transmission intensities in Mainland Tanzania, to generate baseline data before the introduction of the malaria vaccines in the country. METHODS: The analysis involved 589 whole genome sequences generated by and as part of the MalariaGEN Community Project. The samples were collected between 2013 and January 2015 from five regions of Mainland Tanzania: Morogoro and Tanga (Muheza) (moderate transmission areas), and Kagera (Muleba), Lindi (Nachingwea), and Kigoma (Ujiji) (high transmission areas). Wright's inbreeding coefficient (Fws), Wright's fixation index (FST), principal component analysis, nucleotide diversity, and Tajima's D were used to assess within-host parasite diversity, population structure and natural selection. RESULTS: Based on Fws (< 0.95), there was high polyclonality (ranging from 69.23% in Nachingwea to 56.9% in Muheza). No population structure was detected in the Pfcsp gene in the five regions (mean FST = 0.0068). The average nucleotide diversity (π), nucleotide differentiation (K) and haplotype diversity (Hd) in the five regions were 4.19, 0.973 and 0.0035, respectively. The C-terminal region of Pfcsp showed high nucleotide diversity at Th2R and Th3R regions. Positive values for the Tajima's D were observed in the Th2R and Th3R regions consistent with balancing selection. The Pfcsp C-terminal sequences revealed 50 different haplotypes (H_1 to H_50), with only 2% of sequences matching the 3D7 strain haplotype (H_50). Conversely, with the NF54 strain, the Pfcsp C-terminal sequences revealed 49 different haplotypes (H_1 to H_49), with only 0.4% of the sequences matching the NF54 strain (Hap_49). CONCLUSIONS: The findings demonstrate high diversity of the Pfcsp gene with limited population differentiation. The Pfcsp gene showed positive Tajima's D values, consistent with balancing selection for variants within Th2R and Th3R regions. The study observed differences between the intended haplotypes incorporated into the design of RTS,S and R21 vaccines and those present in natural parasite populations. Therefore, additional research is warranted, incorporating other regions and more recent data to comprehensively assess trends in genetic diversity within this important gene. Such insights will inform the choice of alleles to be included in the future vaccines.


Assuntos
Plasmodium falciparum , Polimorfismo Genético , Proteínas de Protozoários , Seleção Genética , Humanos , Doenças Endêmicas , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Tanzânia
7.
Malar J ; 22(1): 15, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635660

RESUMO

BACKGROUND: Malaria control in Liberia depends upon universal coverage with pyrethroid-impregnated long-lasting insecticidal nets (LLINs). Despite regular mass distribution, LLIN coverage and usage is patchy. Pyrethroid resistance in malaria vectors may further reduce LLIN efficacy. Durable Wall Lining (DWL), a novel material treated with two non-pyrethroid class insecticides, was designed to be installed onto the surface of inner walls, and cover openings and ceiling surfaces of rural houses. OBJECTIVES: AIM: To determine the malaria control efficacy of DWL. PRIMARY OBJECTIVE: To determine if DWL has an additional protective effect in an area of pyrethroid resistance. SECONDARY OBJECTIVES: To compare surface bio-availability of insecticides and entomological effectiveness over the study duration. DESIGN: A cluster randomized trial. PARTICIPANTS: Children aged 2-59 months. CONTROL ARM: 50 houses per 20 clusters, all of which received LLIN within the previous 12 months. ACTIVE ARM: 50 houses per 20 experimental clusters, all of which received LLINs with the previous 12 months, and had internal walls and ceilings lined with DWL. RANDOMISATION: Cluster villages were randomly allocated to control or active arms, and paired on 4 covariates. MAIN OUTCOME MEASURES: PRIMARY MEASURE: Prevalence of infection with P. falciparum in children aged 2 to 59 months. SECONDARY MEASURE: Surface bioavailability and entomological effectiveness of DWL active ingredients. RESULTS: Plasmodium falciparum prevalence in active clusters after 12 months was 34.6% compared to 40.1% in control clusters (p = 0.052). The effect varied with elevation and was significant (RR = 1.3, p = 0.022) in 14 pairs of upland villages. It was not significant (RR = 1.3, p = 0.344) in 6 pairs of coastal villages. Pooled risk ratio (RR) was calculated in SAS (Cary, NC, USA) using the Cochran-Mantel-Haenszel (CMH) test for upland and coastal cluster pairs. DWL efficacy was sustained at almost 100% for 12 months. CONCLUSIONS: Findings indicate that DWL is a scalable and effective malaria control intervention in stable transmission areas with pyrethroid-resistant vectors, where LLIN usage is difficult to achieve, and where local housing designs include large gable and eve openings. Trial registration ClinicalTrials.gov identifier: NCT02448745 (19 May 2015): https://clinicaltrials.gov/ct2/show/NCT02448745.


Assuntos
Mosquiteiros Tratados com Inseticida , Inseticidas , Malária Falciparum , Malária , Piretrinas , Criança , Humanos , Libéria/epidemiologia , Malária/epidemiologia , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Controle de Mosquitos/métodos
8.
Elife ; 132024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39373634

RESUMO

Most malaria rapid diagnostic tests (RDTs) detect Plasmodium falciparum histidine-rich protein 2 (PfHRP2) and PfHRP3, but deletions of pfhrp2 and phfrp3 genes make parasites undetectable by RDTs. We analyzed 19,313 public whole-genome-sequenced P. falciparum field samples to understand these deletions better. Pfhrp2 deletion only occurred by chromosomal breakage with subsequent telomere healing. Pfhrp3 deletions involved loss from pfhrp3 to the telomere and showed three patterns: no other associated rearrangement with evidence of telomere healing at breakpoint (Asia; Pattern 13-TARE1); associated with duplication of a chromosome 5 segment containing multidrug-resistant-1 gene (Asia; Pattern 13-5++); and most commonly, associated with duplication of a chromosome 11 segment (Americas/Africa; Pattern 13-11++). We confirmed a 13-11 hybrid chromosome with long-read sequencing, consistent with a translocation product arising from recombination between large interchromosomal ribosome-containing segmental duplications. Within most 13-11++ parasites, the duplicated chromosome 11 segments were identical. Across parasites, multiple distinct haplotype groupings were consistent with emergence due to clonal expansion of progeny from intrastrain meiotic recombination. Together, these observations suggest negative selection normally removes 13-11++pfhrp3 deletions, and specific conditions are needed for their emergence and spread including low transmission, findings that can help refine surveillance strategies.


Assuntos
Antígenos de Protozoários , Plasmodium falciparum , Proteínas de Protozoários , Translocação Genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Plasmodium falciparum/genética , Antígenos de Protozoários/genética , Antígenos de Protozoários/metabolismo , Duplicações Segmentares Genômicas/genética , Humanos , Deleção de Genes , Malária Falciparum/parasitologia
9.
medRxiv ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38978652

RESUMO

Plasmodium vivax transmission occurs throughout the tropics and is an emerging threat in areas of Plasmodium falciparum decline, causing relapse infections that complicate treatment and control. Targeted sequencing for P. falciparum has been widely deployed to detect population structure and the geographic spread of antimalarial and diagnostic resistance. However, there are fewer such tools for P. vivax . Leveraging global variation data, we designed four molecular inversion probe (MIP) genotyping panels targeting geographically differentiating SNPs, neutral SNPs, putative antimalarial resistance genes, and vaccine candidate genes. We deployed these MIP panels on 866 infections from the Peruvian Amazon and identified transmission networks with clonality (IBD>0.99), copy number variation in Pvdbp and multiple Pvrbps , fixation of putative antimalarial resistance, and balancing selection in 13 vaccine candidate genes. Our MIP panels are the broadest genotyping panel currently available and are poised for successful deployment in other regions of P. vivax transmission.

10.
medRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38343796

RESUMO

Background: In 2021 and 2023, the World Health Organization approved RTS, S/AS01 and R21/Matrix M malaria vaccines, respectively, for routine immunization of children in African countries with moderate to high transmission. These vaccines are made of Plasmodium falciparum circumsporozoite protein (Pfcsp) but polymorphisms in this gene raises concerns regarding strain-specific responses and the long-term efficacy of these vaccines. This study assessed the Pfcsp genetic diversity, population structure and signatures of selection among parasites from areas of different malaria transmission in mainland Tanzania, to generate baseline data before the introduction of the malaria vaccines in the country. Methods: The analysis involved 589 whole genome sequences generated by and as part of the MalariaGEN Community Project. The samples were collected between 2013 and January 2015 from five regions of mainland Tanzania: Morogoro and Tanga (Muheza) (moderate transmission areas), and Kagera (Muleba), Lindi (Nachingwea), and Kigoma (Ujiji) (high transmission areas). Wright's inbreeding coefficient (Fws), Wright's fixation index (FST), principal component analysis, nucleotide diversity, and Tajima's D were used to assess within-host parasite diversity, population structure and natural selection. Results: Based on Fws (< 0.95), there was high polyclonality (ranged from 69.23% in Nachingwea to 56.9% in Muheza). No population structure was detected in the Pfcsp gene in the five regions (mean FST= 0.0068). The average nucleotide diversity (π), nucleotide differentiation (K) and haplotype diversity (Hd) in the five regions were 4.19, 0.973 and 0.0035, respectively. The C-terminal region of Pfcsp showed high nucleotide diversity at Th2R and Th3R regions. Positive values for the Tajima's D were observed in the Th2R and Th3R regions consistent with balancing selection. The Pfcsp C-terminal sequences had 50 different haplotypes (H_1 to H_50) and only 2% of sequences matched the 3D7 strain haplotype (H_50). Conclusions: The findings demonstrate high diversity of the Pfcsp gene with limited population differentiation. The Pfcsp gene showed positive Tajima's D values for parasite populations, consistent with balancing selection for variants within Th2R and Th3R regions. This data is consistent with other studies conducted across Africa and worldwide, which demonstrate low 3D7 haplotypes and little population structure. Therefore, additional research is warranted, incorporating other regions and more recent data to comprehensively assess trends in genetic diversity within this important gene. Such insights will inform the choice of alleles to be included in the future vaccines.

11.
Parasit Vectors ; 17(1): 153, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38519992

RESUMO

BACKGROUND: Recent studies point to the need to incorporate the detection of non-falciparum species into malaria surveillance activities in sub-Saharan Africa, where 95% of the world's malaria cases occur. Although malaria caused by infection with Plasmodium falciparum is typically more severe than malaria caused by the non-falciparum Plasmodium species P. malariae, P. ovale spp. and P. vivax, the latter may be more challenging to diagnose, treat, control and ultimately eliminate. The prevalence of non-falciparum species throughout sub-Saharan Africa is poorly defined. Tanzania has geographical heterogeneity in transmission levels but an overall high malaria burden. METHODS: To estimate the prevalence of malaria species in Mainland Tanzania, we randomly selected 1428 samples from 6005 asymptomatic isolates collected in previous cross-sectional community surveys across four regions and analyzed these by quantitative PCR to detect and identify the Plasmodium species. RESULTS: Plasmodium falciparum was the most prevalent species in all samples, with P. malariae and P. ovale spp. detected at a lower prevalence (< 5%) in all four regions; P. vivax was not detected in any sample. CONCLUSIONS: The results of this study indicate that malaria elimination efforts in Tanzania will need to account for and enhance surveillance of these non-falciparum species.


Assuntos
Malária Falciparum , Malária Vivax , Malária , Humanos , Infecções Assintomáticas/epidemiologia , Estudos Transversais , Malária/epidemiologia , Malária Falciparum/epidemiologia , Malária Vivax/epidemiologia , Plasmodium falciparum , Plasmodium malariae , Prevalência , Tanzânia/epidemiologia
12.
medRxiv ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38746440

RESUMO

In Africa, the first Plasmodium falciparum Kelch13 (K13) artemisinin partial resistance mutation 561H was first detected and validated in Rwanda. Surveillance to better define the extent of the emergence in Rwanda and neighboring countries as other mutations arise in East Africa is critical. We employ a novel scheme of liquid blood drop preservation combined with pooled sequencing to provide a cost-effective rapid assessment of resistance mutation frequencies at multiple collection sites across Rwanda and neighboring countries. Malaria-positive samples (n=5,465) were collected from 39 health facilities in Rwanda, Uganda, Tanzania, and the Democratic Republic of the Congo (DRC) between May 2022 and March 2023 and sequenced in 199 pools. In Rwanda, K13 561H and 675V were detected in 90% and 65% of sites with an average frequency of 19.0% (0-54.5%) and 5.0% (0-35.5%), respectively. In Tanzania, 561H had high frequency in multiple sites while it was absent from the DRC although 675V was seen at low frequency. Conceringly candidate mutations were observed: 441L, 449A, and 469F co-occurred with validated mutations suggesting they are arising under the same pressures. Other resistance markers associated with artemether-lumefantrine are common: P. falciparum multidrug resistance protein 1 N86 at 98.0% and 184F at 47.0% (0-94.3%) and P. falciparum chloroquine resistance transporter 76T at 14.7% (0-58.6%). Additionally, sulfadoxine-pyrimethamine-associated mutations show high frequencies. Overall, K13 mutations are rapidly expanding in the region further endangering control efforts with the potential of engendering partner drug resistance.

13.
medRxiv ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36865135

RESUMO

The Zanzibar archipelago of Tanzania has become a low-transmission area for Plasmodium falciparum. Despite being considered an area of pre-elimination for years, achieving elimination has been difficult, likely due to a combination of imported infections from mainland Tanzania, and continued local transmission. To shed light on these sources of transmission, we applied highly multiplexed genotyping utilizing molecular inversion probes to characterize the genetic relatedness of 282 P. falciparum isolates collected across Zanzibar and in Bagamoyo District on the coastal mainland from 2016-2018. Overall, parasite populations on the coastal mainland and Zanzibar archipelago remain highly related. However, parasite isolates from Zanzibar exhibit population microstructure due to rapid decay of parasite relatedness over very short distances. This, along with highly related pairs within shehias, suggests ongoing low level local transmission. We also identified highly related parasites across shehias that reflect human mobility on the main island of Unguja and identified a cluster of highly related parasites, suggestive of an outbreak, in the Micheweni district on Pemba island. Parasites in asymptomatic infections demonstrated higher complexity of infection than those in symptomatic infections, but have similar core genomes. Our data support importation as a main source of genetic diversity and contribution to the parasite population on Zanzibar, but they also show local outbreak clusters where targeted interventions are essential to block local transmission. These results highlight the need for preventive measures against imported malaria and enhanced control measures in areas that remain receptive for malaria reemergence due to susceptible hosts and competent vectors.

14.
Lancet Microbe ; 5(10): 100920, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39159629

RESUMO

BACKGROUND: The emergence of the artemisinin partial resistance (ART-R) mutation in the Plasmodium falciparum kelch13 gene (k13), Arg561His, in Rwanda and the regional presence of polymorphisms affecting sulfadoxine-pyrimethamine have raised concern in neighbouring Tanzania. The goal of this study was to assess the status of antimalarial resistance in Tanzania, with a focus on the border with Rwanda, to understand the distribution of the Arg561His mutation, partner drug resistance, and resistance to chemoprevention drugs. METHODS: In this cross-sectional survey, capillary dried blood spots were collected from malaria positive asymptomatic individuals in the community and symptomatic individuals in health facilities aged 6 months and older, in 13 regions of mainland Tanzania from Jan 31 to June 26, 2021. Exclusion criteria included residence of the areas other than the target sites, presenting to the health facility for care and treatment of conditions other than malaria, and not providing informed consent. Samples were assessed for antimalarial resistance polymorphisms and genetic relatedness using molecular inversion probes targeting P falciparum and short-read whole-genome sequencing. The primary outcome was the prevalence of molecular markers of antimalarial resistance at the region level, as well as at the district level in Kagera, a region in the northwest of the country at the border with Rwanda. FINDINGS: 6855 (88·1%) of 7782 capillary dried blood spot samples collected were successfully genotyped. The overall prevalence of k13 Arg561His in Kagera was 7·7% (90% CI 6·0-9·4; 50 of 649), with the highest prevalence in the districts near the Rwandan border (22·8% [31 of 136] in Karagwe, 14·4% [17 of 118]) in Kyerwa, and 1·4% [two of 144] in Ngara). k13 Arg561His was uncommon in the other regions. Haplotype analysis suggested that some of these parasites are related to isolates collected in Rwanda in 2015, supporting regional spread of Arg561His. However, a novel k13 Arg561His haplotype was observed, potentially indicating a second origin in the region. Other validated k13 resistance polymorphisms (one Arg622Ile and two Ala675Val isolates) were also identified. A region of prevalent dihydrofolate reductase Ile164Leu mutation, associated with sulfadoxine-pyrimethamine resistance, was also identified in Kagera (15·2% [12·6-17·8%]; 80 of 526). The mutant crt Lys76Thr mutation, associated with chloroquine and amodiaquine resistance, was uncommon, occurring only in 75 of 2861 genotyped isolates, whereases the wild-type mdr1 Asn86Tyr allele, associated with reduced sensitivity to lumefantrine, was found in 99·7% (3819 of 3830) of samples countrywide. INTERPRETATION: These findings show that the k13 Arg561His mutation is common in northwest Tanzania and that multiple emergences of ART-R, similar as to what was seen in southeast Asia, have occurred. Mutations associated with high levels of sulfadoxine-pyrimethamine resistance are common. These results raise concerns about the long-term efficacy of artemisinin and chemoprevention antimalarials in the region. Understanding how multiple emergences interact with drivers of regional spread is essential for combating ART-R in Africa. FUNDING: This study was funded by the Bill & Melinda Gates Foundation and the National Institutes of Health.


Assuntos
Antimaláricos , Artemisininas , Combinação de Medicamentos , Resistência a Medicamentos , Malária Falciparum , Mutação , Plasmodium falciparum , Pirimetamina , Sulfadoxina , Estudos Transversais , Tanzânia/epidemiologia , Antimaláricos/uso terapêutico , Antimaláricos/farmacologia , Humanos , Resistência a Medicamentos/genética , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Sulfadoxina/uso terapêutico , Sulfadoxina/farmacologia , Malária Falciparum/epidemiologia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Pirimetamina/uso terapêutico , Pirimetamina/farmacologia , Artemisininas/uso terapêutico , Artemisininas/farmacologia , Masculino , Feminino , Adolescente , Criança , Prevalência , Adulto , Pré-Escolar , Adulto Jovem , Lactente , Pessoa de Meia-Idade , Proteínas de Protozoários/genética , Ruanda/epidemiologia
15.
Elife ; 122024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935423

RESUMO

Background: The Zanzibar archipelago of Tanzania has become a low-transmission area for Plasmodium falciparum. Despite being considered an area of pre-elimination for years, achieving elimination has been difficult, likely due to a combination of imported infections from mainland Tanzania and continued local transmission. Methods: To shed light on these sources of transmission, we applied highly multiplexed genotyping utilizing molecular inversion probes to characterize the genetic relatedness of 282 P. falciparum isolates collected across Zanzibar and in Bagamoyo district on the coastal mainland from 2016 to 2018. Results: Overall, parasite populations on the coastal mainland and Zanzibar archipelago remain highly related. However, parasite isolates from Zanzibar exhibit population microstructure due to the rapid decay of parasite relatedness over very short distances. This, along with highly related pairs within shehias, suggests ongoing low-level local transmission. We also identified highly related parasites across shehias that reflect human mobility on the main island of Unguja and identified a cluster of highly related parasites, suggestive of an outbreak, in the Micheweni district on Pemba island. Parasites in asymptomatic infections demonstrated higher complexity of infection than those in symptomatic infections, but have similar core genomes. Conclusions: Our data support importation as a main source of genetic diversity and contribution to the parasite population in Zanzibar, but they also show local outbreak clusters where targeted interventions are essential to block local transmission. These results highlight the need for preventive measures against imported malaria and enhanced control measures in areas that remain receptive to malaria reemergence due to susceptible hosts and competent vectors. Funding: This research was funded by the National Institutes of Health, grants R01AI121558, R01AI137395, R01AI155730, F30AI143172, and K24AI134990. Funding was also contributed from the Swedish Research Council, Erling-Persson Family Foundation, and the Yang Fund. RV acknowledges funding from the MRC Centre for Global Infectious Disease Analysis (reference MR/R015600/1), jointly funded by the UK Medical Research Council (MRC) and the UK Foreign, Commonwealth & Development Office (FCDO), under the MRC/FCDO Concordat agreement and is also part of the EDCTP2 program supported by the European Union. RV also acknowledges funding by Community Jameel.


Assuntos
Malária Falciparum , Plasmodium falciparum , Tanzânia/epidemiologia , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação , Malária Falciparum/transmissão , Malária Falciparum/parasitologia , Malária Falciparum/epidemiologia , Humanos , Genótipo
16.
Sci Rep ; 14(1): 8158, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589477

RESUMO

Plasmodium falciparum with the histidine rich protein 2 gene (pfhrp2) deleted from its genome can escape diagnosis by HRP2-based rapid diagnostic tests (HRP2-RDTs). The World Health Organization (WHO) recommends switching to a non-HRP2 RDT for P. falciparum clinical case diagnosis when pfhrp2 deletion prevalence causes ≥ 5% of RDTs to return false negative results. Tanzania is a country of heterogenous P. falciparum transmission, with some regions approaching elimination and others at varying levels of control. In concordance with the current recommended WHO pfhrp2 deletion surveillance strategy, 100 health facilities encompassing 10 regions of Tanzania enrolled malaria-suspected patients between February and July 2021. Of 7863 persons of all ages enrolled and providing RDT result and blood sample, 3777 (48.0%) were positive by the national RDT testing for Plasmodium lactate dehydrogenase (pLDH) and/or HRP2. A second RDT testing specifically for the P. falciparum LDH (Pf-pLDH) antigen found 95 persons (2.5% of all RDT positives) were positive, though negative by the national RDT for HRP2, and were selected for pfhrp2 and pfhrp3 (pfhrp2/3) genotyping. Multiplex antigen detection by laboratory bead assay found 135/7847 (1.7%) of all blood samples positive for Plasmodium antigens but very low or no HRP2, and these were selected for genotyping as well. Of the samples selected for genotyping based on RDT or laboratory multiplex result, 158 were P. falciparum DNA positive, and 140 had sufficient DNA to be genotyped for pfhrp2/3. Most of these (125/140) were found to be pfhrp2+/pfhrp3+, with smaller numbers deleted for only pfhrp2 (n = 9) or only pfhrp3 (n = 6). No dual pfhrp2/3 deleted parasites were observed. This survey found that parasites with these gene deletions are rare in Tanzania, and estimated that 0.24% (95% confidence interval: 0.08% to 0.39%) of false-negative HRP2-RDTs for symptomatic persons were due to pfhrp2 deletions in this 2021 Tanzania survey. These data provide evidence for HRP2-based diagnostics as currently accurate for P. falciparum diagnosis in Tanzania.


Assuntos
Antígenos de Grupos Sanguíneos , Malária Falciparum , Humanos , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Deleção de Genes , Tanzânia/epidemiologia , Testes Diagnósticos de Rotina/métodos , Antígenos de Protozoários/genética , Malária Falciparum/diagnóstico , Malária Falciparum/epidemiologia , Malária Falciparum/genética , Instalações de Saúde , DNA
17.
Open Forum Infect Dis ; 10(4): ofad149, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37096145

RESUMO

Background: Artemisinin resistance mutations in Plasmodium falciparum kelch13 (Pfk13) have begun to emerge in Africa, with Pfk13-R561H being the first reported in Rwanda in 2014, but limited sampling left questions about its early distribution and origin. Methods: We genotyped P. falciparum positive dried blood spot (DBS) samples from a nationally representative 2014-2015 Rwanda Demographic Health Surveys (DHS) HIV study. DBS were subsampled from DHS sampling clusters with >15% P. falciparum prevalence, as determined by rapid testing or microscopy done during the DHS study (n clusters = 67, n samples = 1873). Results: We detected 476 parasitemias among 1873 residual blood spots from a 2014-2015 Rwanda Demographic Health Survey. We sequenced 351 samples: 341/351 were wild-type (97.03% weighted), and 4 samples (1.34% weighted) harbored R561H that were significantly spatially clustered. Other nonsynonymous mutations found were V555A (3), C532W (1), and G533A (1). Conclusions: Our study better defines the early distribution of R561H in Rwanda. Previous studies only observed the mutation in Masaka as of 2014, but our study indicates its presence in higher-transmission regions in the southeast of the country at that time.

18.
medRxiv ; 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38196592

RESUMO

Background: Emerging artemisinin resistance and diagnostic resistance are a threat to malaria control in Africa. Plasmodium falciparum kelch13 (K13) propeller-domain mutations that confer artemisinin partial resistance have emerged in Africa. K13-561H was initially described at a frequency of 7.4% from Masaka in 2014-2015 but not present in nearby Rukara. By 2018, 19.6% of isolates in Masaka and 22% of isolates in Rukara contained the mutation. Longitudinal monitoring is essential to inform control efforts. In Rukara, we sought to assess recent K13-561H prevalence changes, as well as for other key mutations. Prevalence of hrp2/3 deletions was also assessed. Methods: We genotyped samples collected in Rukara in 2021 for key artemisinin and partner drug resistance mutations using molecular inversion probe assays and for hrp2/3 deletions using qPCR. Results: Clinically validated K13 artemisinin partial resistance mutations continue to increase in prevalence with the overall level of artemisinin resistance mutant infections reaching 32% in Rwanda. The increase appears to be due to the rapid emergence of K13-675V (6.4%, 6/94 infections), previously not observed, rather than continued expansion of 561H (23.5% 20/85). Mutations to partner drugs and other antimalarials were variable, with high levels of multidrug resistance 1 (MDR1) N86 (95.5%) associated with lumefantrine resistance and dihydrofolate reductase (DHFR) 164L (24.7%) associated with antifolate resistance, but low levels of amodiaquine resistance polymorphisms with chloroquine resistance transporter (CRT ) 76T: at 6.1% prevalence. No hrp2 or hrp3 gene deletions associated with diagnostic resistance were found. Conclusions: Increasing prevalence of artemisinin partial resistance due to K13-561H and the rapid expansion of K13-675V is concerning for the longevity of artemisinin effectiveness in the region. False negative mRDT results do not appear to be an issue with no hrp2 or hpr3 deletions detected. Continued molecular surveillance in this region and surrounding areas is needed to follow artemisinin resistance and provide early detection of partner drug resistance, which would likely compromise control and increase malaria morbidity and mortality in East Africa.

19.
medRxiv ; 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37790396

RESUMO

Recent data indicate that non- Plasmodium falciparum species may be more prevalent than previously realized in sub-Saharan Africa, the region where 95% of the world's malaria cases occur. Although Plasmodium malariae, Plasmodium ovale spp., and Plasmodium vivax are generally less severe than P. falciparum , treatment and control are more challenging, and their geographic distributions are not well characterized. In order to characterize the distribution of malaria species in Mainland Tanzania (which has a high burden and geographically heterogeneous transmission levels), we randomly selected 3,284 samples from 12,845 samples to determine presence and parasitemia of different malaria species. The samples were collected from cross-sectional surveys in 100 health facilities across ten regions and analyzed via quantitative real-time PCR to characterize regional positivity rates for each species. P. falciparum was most prevalent, but P. malariae and P. ovale were found in all regions except Dar es Salaam, with high levels (>5%) of P. ovale in seven regions (70%). The highest positivity rate of P. malariae was 4.5% in Mara region and eight regions (80%) had positivity rates ≥1%. We also detected three P. vivax infections in the very low-transmission Kilimanjaro region. While most samples that tested positive for non-falciparum malaria were co-infected with P. falciparum , 23.6% (n = 13/55) of P. malariae and 14.7% (n = 24/163) of P. ovale spp. samples were mono-infections. P. falciparum remains by far the largest threat, but our data indicate that malaria elimination efforts in Tanzania will require increased surveillance and improved understanding of the biology of non-falciparum species.

20.
Microbiol Spectr ; 11(3): e0523622, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37158739

RESUMO

Malaria, especially Plasmodium falciparum infection, remains an enormous problem, and its treatment and control are seriously challenged by drug resistance. New antimalarial drugs are needed. To characterize the Medicines for Malaria Venture pipeline of antimalarials under development, we assessed the ex vivo drug susceptibilities to 19 compounds targeting or potentially impacted by mutations in P. falciparum ABC transporter I family member 1, acetyl-CoA synthetase, cytochrome b, dihydroorotate dehydrogenase, elongation factor 2, lysyl-tRNA synthetase, phenylalanyl-tRNA synthetase, plasmepsin X, prodrug activation and resistance esterase, and V-type H+ ATPase of 998 fresh P. falciparum clinical isolates collected in eastern Uganda from 2015 to 2022. Drug susceptibilities were assessed by 72-h growth inhibition (half-maximum inhibitory concentration [IC50]) assays using SYBR green. Field isolates were highly susceptible to lead antimalarials, with low- to midnanomolar median IC50s, near values previously reported for laboratory strains, for all tested compounds. However, outliers with decreased susceptibilities were identified. Positive correlations between IC50 results were seen for compounds with shared targets. We sequenced genes encoding presumed targets to characterize sequence diversity, search for polymorphisms previously selected with in vitro drug pressure, and determine genotype-phenotype associations. We identified many polymorphisms in target genes, generally in <10% of isolates, but none were those previously selected in vitro with drug pressure, and none were associated with significantly decreased ex vivo drug susceptibility. Overall, Ugandan P. falciparum isolates were highly susceptible to 19 compounds under development as next-generation antimalarials, consistent with a lack of preexisting or novel resistance-conferring mutations in circulating Ugandan parasites. IMPORTANCE Drug resistance necessitates the development of new antimalarial drugs. It is important to assess the activities of compounds under development against parasites now causing disease in Africa, where most malaria cases occur, and to determine if mutations in these parasites may limit the efficacies of new agents. We found that African isolates were generally highly susceptible to the 19 studied lead antimalarials. Sequencing of the presumed drug targets identified multiple mutations in these genes, but these mutations were generally not associated with decreased antimalarial activity. These results offer confidence that the activities of the tested antimalarial compounds now under development will not be limited by preexisting resistance-mediating mutations in African malaria parasites.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Plasmodium falciparum/genética , Uganda , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Malária/parasitologia , Resistência a Medicamentos/genética , Ligases , Proteínas de Protozoários/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA