Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 223: 116123, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484851

RESUMO

Understanding adipose metabolism is essential for addressing obesity and related health concerns. However, the ethical and scientific pressure to animal testing, aligning with the 3Rs, has triggered the implementation of diverse alternative models for analysing anomalies in adipose metabolism. In this review, we will address this issue from various perspectives. Traditional adipocyte cell cultures, whether animal or human-derived, offer a fundamental starting point. These systems have their merits but may not fully replicate in vivo complexity. Established cell lines are valuable for high-throughput screening but may lack the authenticity of primary-derived adipocytes, which closely mimic native tissue. To enhance model sophistication, spheroids have been introduced. These three-dimensional cultures better mimicking the in vivo microenvironment, enabling the study of intricate cell-cell interactions, gene expression, and metabolic pathways. Organ-on-a-chip (OoC) platforms take this further by integrating multiple cell types into microfluidic devices, simulating tissue-level functions. Adipose-OoC (AOoC) provides dynamic environments with applications spanning drug testing to personalized medicine and nutrition. Beyond in vitro models, genetically amenable organisms (Caenorhabditis elegans, Drosophila melanogaster, and zebrafish larvae) have become powerful tools for investigating fundamental molecular mechanisms that govern adipose tissue functions. Their genetic tractability allows for efficient manipulation and high-throughput studies. In conclusion, a diverse array of research models is crucial for deciphering adipose metabolism. By leveraging traditional adipocyte cell cultures, primary-derived cells, spheroids, AOoCs, and lower organism models, we bridge the gap between animal testing and a more ethical, scientifically robust, and human-relevant approach, advancing our understanding of adipose tissue metabolism and its impact on health.


Assuntos
Drosophila melanogaster , Peixe-Zebra , Animais , Humanos , Tecido Adiposo/metabolismo , Adipócitos/metabolismo , Técnicas de Cultura de Células/métodos , Obesidade/metabolismo
2.
Am J Clin Nutr ; 120(1): 129-144, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38960570

RESUMO

BACKGROUND: Personalized nutrition (PN) has been proposed as a strategy to increase the effectiveness of dietary recommendations and ultimately improve health status. OBJECTIVES: We aimed to assess whether including omics-based PN in an e-commerce tool improves dietary behavior and metabolic profile in general population. METHODS: A 21-wk parallel, single-blinded, randomized intervention involved 193 adults assigned to a control group following Mediterranean diet recommendations (n = 57, completers = 36), PN (n = 70, completers = 45), or personalized plan (PP, n = 68, completers = 53) integrating a behavioral change program with PN recommendations. The intervention used metabolomics, proteomics, and genetic data to assist participants in creating personalized shopping lists in a simulated e-commerce retailer portal. The primary outcome was the Mediterranean diet adherence screener (MEDAS) score; secondary outcomes included biometric and metabolic markers and dietary habits. RESULTS: Volunteers were categorized with a scoring system based on biomarkers of lipid, carbohydrate metabolism, inflammation, oxidative stress, and microbiota, and dietary recommendations delivered accordingly in the PN and PP groups. The intervention significantly increased MEDAS scores in all volunteers (control-3 points; 95% confidence interval [CI]: 2.2, 3.8; PN-2.7 points; 95% CI: 2.0, 3.3; and PP-2.8 points; 95% CI: 2.1, 3.4; q < 0.001). No significant differences were observed in dietary habits or health parameters between PN and control groups after adjustment for multiple comparisons. Nevertheless, personalized recommendations significantly (false discovery rate < 0.05) and selectively enhanced the scores calculated with biomarkers of carbohydrate metabolism (ß: -0.37; 95% CI: -0.56, -0.18), oxidative stress (ß: -0.37; 95% CI: -0.60, -0.15), microbiota (ß: -0.38; 95% CI: -0.63, -0.15), and inflammation (ß: -0.78; 95% CI: -1.24, -0.31) compared with control diet. CONCLUSIONS: Integration of personalized strategies within an e-commerce-like tool did not enhance adherence to Mediterranean diet or improved health markers compared with general recommendations. The metabotyping approach showed promising results and more research is guaranteed to further promote its application in PN. This trial was registered at clinicaltrials.gov as NCT04641559 (https://clinicaltrials.gov/study/NCT04641559?cond=NCT04641559&rank=1).


Assuntos
Dieta Mediterrânea , Medicina de Precisão , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Método Simples-Cego , Metabolômica , Estado Nutricional , Biomarcadores/sangue , Comportamento Alimentar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA