Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 29(4): 761-770, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36918377

RESUMO

SARS-CoV-2 infections among vaccinated nursing home residents increased after the Omicron variant emerged. Data on booster dose effectiveness in this population are limited. During July 2021-March 2022, nursing home outbreaks in 11 US jurisdictions involving >3 infections within 14 days among residents who had received at least the primary COVID-19 vaccine(s) were monitored. Among 2,188 nursing homes, 1,247 outbreaks were reported in the periods of Delta (n = 356, 29%), mixed Delta/Omicron (n = 354, 28%), and Omicron (n = 536, 43%) predominance. During the Omicron-predominant period, the risk for infection within 14 days of an outbreak start was lower among boosted residents than among residents who had received the primary vaccine series alone (risk ratio [RR] 0.25, 95% CI 0.19-0.33). Once infected, boosted residents were at lower risk for all-cause hospitalization (RR 0.48, 95% CI 0.40-0.49) and death (RR 0.45, 95% CI 0.34-0.59) than primary vaccine-only residents.


Assuntos
COVID-19 , Estados Unidos/epidemiologia , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , SARS-CoV-2 , Casas de Saúde , Surtos de Doenças
2.
Eur J Wildl Res ; 66(3): 42, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32647501

RESUMO

Eurasian beaver (Castor fiber) populations are expanding across Europe. Depending on location, beaver dams bring multiple benefits and/or require management. Using nationally available data, we developed: a Beaver Forage Index (BFI), identifying beaver foraging habitat, and a Beaver Dam Capacity (BDC) model, classifying suitability of river reaches for dam construction, to estimate location and number of dams at catchment scales. Models were executed across three catchments, in Great Britain (GB), containing beaver. An area of 6747 km2 was analysed for BFI and 16,739 km of stream for BDC. Field surveys identified 258 km of channel containing beaver activity and 89 dams, providing data to test predictions. Models were evaluated using a categorical binomial Bayesian framework to calculate probability of foraging and dam construction. BFI and BDC models successfully categorised the use of reaches for foraging and damming, with higher scoring reaches being preferred. Highest scoring categories were ca. 31 and 79 times more likely to be used than the lowest for foraging and damming respectively. Zero-inflated negative binomial regression showed that modelled dam capacity was significantly related (p = 0.01) to observed damming and was used to predict numbers of dams that may occur. Estimated densities of dams, averaged across each catchment, ranged from 0.4 to 1.6 dams/km, though local densities may be up to 30 dams/km. These models provide fundamental information describing the distribution of beaver foraging habitat, where dams may be constructed and how many may occur. This supports the development of policy and management concerning the reintroduction and recolonisation of beaver.

3.
Environ Manage ; 62(3): 548-570, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29752496

RESUMO

Environmental stressors associated with human land and water-use activities have degraded many riparian ecosystems across the western United States. These stressors include (i) the widespread expansion of invasive plant species that displace native vegetation and exacerbate streamflow and sediment regime alteration; (ii) agricultural and urban development in valley bottoms that decouple streams and rivers from their floodplains and reduce instream wood recruitment and retention; and (iii) flow modification that reduces water quantity and quality, degrading aquatic habitats. Here we apply a novel drainage network model to assess the impacts of multiple stressors on reach-scale riparian condition across two large U.S. regions. In this application, we performed a riparian condition assessment evaluating three dominant stressors: (1) riparian vegetation departure from historical condition; (2) land-use intensity within valley bottoms; and (3) floodplain fragmentation caused by infrastructure within valley bottoms, combining these stressors in a fuzzy inference system. We used freely available, geospatial data to estimate reach-scale (500 m) riparian condition for 52,800 km of perennial streams and rivers, 25,600 km in Utah, and 27,200 km in 12 watersheds of the interior Columbia River Basin (CRB). Model outputs showed that riparian condition has been at least moderately impaired across ≈70% of the streams and rivers in Utah and ≈49% in the CRB. We found 84% agreement (Cohen's ĸ = 0.79) between modeled reaches and field plots, indicating that modeled riparian condition reasonably approximates on-the-ground conditions. Our approach to assessing riparian condition can be used to prioritize watershed-scale floodplain conservation and restoration by providing network-scale data on the extent and severity of riparian degradation. The approach that we applied here is flexible and can be expanded to run with additional riparian stressor data and/or finer resolution input data.


Assuntos
Ecossistema , Espécies Introduzidas , Rios , Agricultura , Conservação dos Recursos Naturais , Humanos , Estados Unidos , Utah , Abastecimento de Água
4.
J Environ Manage ; 202(Pt 2): 447-460, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27839846

RESUMO

Floodplain riparian ecosystems support unique vegetation communities and high biodiversity relative to terrestrial landscapes. Accordingly, estimating riparian ecosystem health across landscapes is critical for sustainable river management. However, methods that identify local riparian vegetation condition, an effective proxy for riparian health, have not been applied across broad, regional extents. Here we present an index to assess reach-scale (500 m segment) riparian vegetation condition across entire drainage networks within large, physiographically-diverse regions. We estimated riparian vegetation condition for 53,250 km of perennial streams and rivers, 25,685 km in Utah, and 27,565 km in twelve watersheds of the interior Columbia River Basin (CRB), USA. We used nationally available, existing land cover classification derived from 30 m Landsat imagery (LANDFIRE EVT) and a modeled estimate of pre-European settlement land cover (LANDFIRE BpS). The index characterizes riparian vegetation condition as the ratio of existing native riparian vegetation cover to pre-European settlement riparian vegetation cover at a given reach. Roughly 62% of Utah and 48% of CRB watersheds showed significant (>33%) to large (>66%) departure from historic condition. Riparian vegetation change was predominantly caused by human land-use impacts (development and agriculture), or vegetation change (native riparian to invasive or upland vegetation types) that likely resulted from flow and disturbance regime alteration. Through comparisons to ground-based classification results, we estimate the existing vegetation component of the index to be 85% accurate. Our assessments yielded riparian condition maps that will help resource managers better prioritize sites and treatments for reach-scale conservation and restoration activities.


Assuntos
Biodiversidade , Ecossistema , Rios , Agricultura , Humanos , Estados Unidos , Utah
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA