Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 479: 116733, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37866708

RESUMO

Despite the number of in vitro assays that have been recently developed to identify chemicals that interfere with the hypothalamic-pituitary-thyroid axis (HPT), the translation of those in vitro results into in vivo responses (in vitro to in vivo extrapolation, IVIVE) has received limited attention from the modeling community. To help advance this field a steady state biologically based dose response (BBDR) model for the HPT axis was constructed for the pregnant rat on gestation day (GD) 20. The BBDR HPT axis model predicts plasma levels of thyroid stimulating hormone (TSH) and the thyroid hormones, thyroxine (T4) and triiodothyronine (T3). Thyroid hormones are important for normal growth and development of the fetus. Perchlorate, a potent inhibitor of thyroidal uptake of iodide by the sodium iodide symporter (NIS) protein, was used as a case study for the BBDR HPT axis model. The inhibitory blocking of the NIS by perchlorate was associated with dose-dependent steady state decreases in thyroid hormone production in the thyroid gland. The BBDR HPT axis model predictions for TSH, T3, and T4 plasma concentrations in pregnant Sprague Dawley (SD) rats were within 2-fold of observations for drinking water perchlorate exposures ranging from 10 to 30,000 µg/kg/d. In Long Evans (LE) pregnant rats, for both control and perchlorate drinking water exposures, ranging from 85 to 82,000 µg/kg/d, plasma thyroid hormone and TSH concentrations were predicted within 2 to 3.4- fold of observations. This BBDR HPT axis model provides a successful IVIVE template for thyroid hormone disruption in pregnant rats.


Assuntos
Água Potável , Percloratos , Gravidez , Feminino , Ratos , Animais , Percloratos/toxicidade , Ratos Sprague-Dawley , Ratos Long-Evans , Hormônios Tireóideos , Tiroxina/metabolismo , Tireotropina
2.
Development ; 146(18)2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31444218

RESUMO

Junctional complexes that mediate cell adhesion are key to epithelial integrity, cell division and permeability barrier formation. In Drosophila, the scaffolding proteins Scribble (Scrib) and Discs Large (Dlg) are key regulators of epithelial polarity, proliferation, assembly of junctions and protein trafficking. We found that Scrib and Dlg are necessary for the formation of the tricellular junction (TCJ), a unique junction that forms in epithelia at the point of convergence of three neighboring cells. Scrib and Dlg are in close proximity with the TCJ proteins Gliotactin (Gli) and Bark Beetle (Bark), and both are required for TCJ protein recruitment. Loss of Bark or Gli led to basolateral spread of the TCJ complex at the cell corners. Loss of the septate junction proteins Nrx-IV and the Na+/K+ ATPase also resulted in basolateral spread of the entire TCJ complex at the cell corners. The Scrib PDZ1-2 domains and the Dlg GUK domain are necessary for Bark and Gli localization to the TCJ. Overall, we propose a model in which Scrib and Dlg are key components of the TCJ, and form a complex with Bark and Gli.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Junções Intercelulares/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Proteínas de Drosophila/química , Técnicas de Silenciamento de Genes , Proteínas de Membrana/química , Domínios Proteicos
3.
Eat Weight Disord ; 26(1): 103-114, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31797330

RESUMO

PURPOSE: Despite varied treatment effects, weight recidivism is common and typically associated with the abandonment of prescribed weight management strategies. Literature suggests that difficulty with weight management is associated with deficits in executive functioning, in particular cognitive flexibility and response inhibition, the neurocognitive processes that are involved in goal-directed behaviours, such as dietary adherence. These processes are overlooked by mainstream weight loss programmes. The aim of the study was to assess the effectiveness of a cognitive remediation-enabled cognitive behaviour therapy (CR-CBT) in addressing the neurocognitive, psychological and behavioural correlates of weight loss. It was hypothesised that CR-CBT would improve cognitive flexibility and response inhibition, reduce binge eating, aid weight loss and improve metabolic health. METHODS: Four adults with obesity (body mass index > 30 kg/m2) received 7 weeks of manualised CR-CBT and were assessed via a case series analysis at baseline, end of treatment and 3-month follow-up. Treatment included 3 weekly 90-min group-based behaviour weight loss sessions for 3 weeks, followed by twice-weekly 50-min individualised CR-CBT sessions for 4 weeks. RESULTS: Cognitive remediation-enabled cognitive behaviour therapy produced improvements in response inhibition and cognitive flexibility, and reductions in binge eating frequency, weight, and metabolic health readings between baseline and 3-month follow-up. CONCLUSIONS: This is the first study to assess the effectiveness of CR-CBT in the treatment of obesity. Preliminary indications of treatment success are discussed with respect to study limitations. In light of these results, we recommend further investigation via a randomised control trial (RCT). LEVEL OF EVIDENCE: Level IV, case series.


Assuntos
Transtorno da Compulsão Alimentar , Terapia Cognitivo-Comportamental , Remediação Cognitiva , Adulto , Transtorno da Compulsão Alimentar/terapia , Humanos , Obesidade/terapia , Resultado do Tratamento , Redução de Peso
4.
J Community Health ; 45(1): 73-80, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31396826

RESUMO

This study examined the association between place of service and adherence to select diabetes screening measures in a homeless population. At a Midwestern metropolitan federally qualified health center (FQHC), 508 participants with diabetes and also experiencing homelessness were studied throughout calendar year 2018. Diabetes measures included controlled blood pressure, diabetic foot exam and hemoglobin A1C screening. Patients were seen at one of three locations: FQHC only, shelter only and both shelter and FQHC. After controlling for primary insurance, insurance status, homeless status, age group, ethnicity, primary language, race, sex and poverty level, a stepwise binary logistic regression demonstrated significant model improvement in A1c screening (p ≤ 0.001) and controlled blood pressure (p = 0.009) when place of service was added as a predictor. Specifically, results showed significant negative associations in screening adherence for shelter as compared to FQHC for both controlled blood pressure (OR = 0.40; 95% CI = 0.20-0.79; p = 0.009) and A1c screening (OR = 0.06; 95% CI = 0.03-0.16; p ≤ 0.001). Our results support the hypothesis that FQHC care results in higher rates of adherence than shelter only or FQHC and shelter combined care. The study addresses the gap in literature surrounding place of service and patient adherence. Recommendations for future research are included.


Assuntos
Diabetes Mellitus/diagnóstico , Pessoas Mal Alojadas/estatística & dados numéricos , Programas de Rastreamento/estatística & dados numéricos , Cooperação do Paciente/estatística & dados numéricos , Pressão Sanguínea/fisiologia , Centros Comunitários de Saúde , Hemoglobinas Glicadas/análise , Humanos , Meio-Oeste dos Estados Unidos
5.
Regul Toxicol Pharmacol ; 106: 111-136, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31018155

RESUMO

Thyroid hormones (THs; T3 and T4) play a role in development of cardiovascular, reproductive, immune and nervous systems. Thus, interpretation of TH changes from rodent studies (during pregnancy, in fetuses, neonates, and adults) is critical in hazard characterization and risk assessment. A roundtable session at the 2017 Society of Toxicology (SOT) meeting brought together academic, industry and government scientists to share knowledge and different perspectives on technical and data interpretation issues. Data from a limited group of laboratories were compiled for technical discussions on TH measurements, including good practices for reliable serum TH data. Inter-laboratory historical control data, derived from immunoassays or mass spectrometry methods, revealed: 1) assay sensitivities vary within and across methodologies; 2) TH variability is similar across animal ages; 3) laboratories generally achieve sufficiently sensitive TH quantitation levels, although issues remain for lower levels of serum TH and TSH in fetuses and postnatal day 4 pups; thus, assay sensitivity is critical at these life stages. Best practices require detailed validation of rat serum TH measurements across ages to establish assay sensitivity and precision, and identify potential matrix effects. Finally, issues related to data interpretation for biological understanding and risk assessment were discussed, but their resolution remains elusive.


Assuntos
Glândula Tireoide/efeitos dos fármacos , Tiroxina/efeitos adversos , Tri-Iodotironina/efeitos adversos , Animais , Humanos , Imunoensaio , Espectrometria de Massas , Medição de Risco , Tiroxina/administração & dosagem , Tri-Iodotironina/administração & dosagem
6.
J Cell Sci ; 129(7): 1477-89, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26906422

RESUMO

Epithelial bicellular and tricellular junctions are essential for establishing and maintaining permeability barriers. Tricellular junctions are formed by the convergence of three bicellular junctions at the corners of neighbouring epithelia. Gliotactin, a member of the Neuroligin family, is located at theDrosophilatricellular junction, and is crucial for the formation of tricellular and septate junctions, as well as permeability barrier function. Gliotactin protein levels are tightly controlled by phosphorylation at tyrosine residues and endocytosis. Blocking endocytosis or overexpressing Gliotactin results in the spread of Gliotactin from the tricellular junction, resulting in apoptosis, delamination and migration of epithelial cells. We show that Gliotactin levels are also regulated at the mRNA level by micro (mi)RNA-mediated degradation and that miRNAs are targeted to a short region in the 3'UTR that includes a conserved miR-184 target site. miR-184 also targets a suite of septate junction proteins, including NrxIV, coracle and Mcr. miR-184 expression is triggered when Gliotactin is overexpressed, leading to activation of the BMP signalling pathway. Gliotactin specifically interferes with Dad, an inhibitory SMAD, leading to activation of the Tkv type-I receptor and activation of Mad to elevate the biogenesis and expression of miR-184.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Proteínas de Membrana/metabolismo , MicroRNAs/biossíntese , Proteínas do Tecido Nervoso/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Apoptose/fisiologia , Movimento Celular/fisiologia , Citocinas/metabolismo , Proteínas de Drosophila/antagonistas & inibidores , Endocitose/fisiologia , Ativação Enzimática , Proteínas de Membrana/genética , MicroRNAs/genética , Proteínas do Tecido Nervoso/genética , Serpinas/metabolismo , Transdução de Sinais/genética , Junções Íntimas/fisiologia
7.
PLoS Pathog ; 12(8): e1005789, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27537218

RESUMO

Cervical cancer is one of the leading causes of cancer death in women worldwide. The causative agents of cervical cancers, high-risk human papillomaviruses (HPVs), cause cancer through the action of two oncoproteins, E6 and E7. The E6 oncoprotein cooperates with an E3 ubiquitin ligase (UBE3A) to target the p53 tumour suppressor and important polarity and junctional PDZ proteins for proteasomal degradation, activities that are believed to contribute towards malignancy. However, the causative link between degradation of PDZ proteins and E6-mediated malignancy is largely unknown. We have developed an in vivo model of HPV E6-mediated cellular transformation using the genetic model organism, Drosophila melanogaster. Co-expression of E6 and human UBE3A in wing and eye epithelia results in severe morphological abnormalities. Furthermore, E6, via its PDZ-binding motif and in cooperation with UBE3A, targets a suite of PDZ proteins that are conserved in human and Drosophila, including Magi, Dlg and Scribble. Similar to human epithelia, Drosophila Magi is a major degradation target. Magi overexpression rescues the cellular abnormalities caused by E6+UBE3A coexpression and this activity of Magi is PDZ domain-dependent. Drosophila p53 was not targeted by E6+UBE3A, and E6+UBE3A activity alone is not sufficient to induce tumorigenesis, which only occurs when E6+UBE3A are expressed in conjunction with activated/oncogenic forms of Ras or Notch. Finally, through a genetic screen we have identified the insulin receptor signaling pathway as being required for E6+UBE3A induced hyperplasia. Our results suggest a highly conserved mechanism of HPV E6 mediated cellular transformation, and establish a powerful genetic model to identify and understand the cellular mechanisms that underlie HPV E6-induced malignancy.


Assuntos
Transformação Celular Viral/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Núcleosídeo-Fosfato Quinase/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Receptor de Insulina/metabolismo , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Drosophila melanogaster , Humanos , Imuno-Histoquímica , Ubiquitina-Proteína Ligases
8.
Development ; 141(15): 3072-83, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25053436

RESUMO

Many aspects of glial development are regulated by extracellular signals, including those from the extracellular matrix (ECM). Signals from the ECM are received by cell surface receptors, including the integrin family. Previously, we have shown that Drosophila integrins form adhesion complexes with Integrin-linked kinase and talin in the peripheral nerve glia and have conserved roles in glial sheath formation. However, integrin function in other aspects of glial development is unclear. The Drosophila eye imaginal disc (ED) and optic stalk (OS) complex is an excellent model with which to study glial migration, differentiation and glia-neuron interactions. We studied the roles of the integrin complexes in these glial developmental processes during OS/eye development. The common beta subunit ßPS and two alpha subunits, αPS2 and αPS3, are located in puncta at both glia-glia and glia-ECM interfaces. Depletion of ßPS integrin and talin by RNAi impaired the migration and distribution of glia within the OS resulting in morphological defects. Reduction of integrin or talin in the glia also disrupted photoreceptor axon outgrowth leading to axon stalling in the OS and ED. The neuronal defects were correlated with a disruption of the carpet glia tube paired with invasion of glia into the core of the OS and the formation of a glial cap. Our results suggest that integrin-mediated extracellular signals are important for multiple aspects of glial development and non-autonomously affect axonal migration during Drosophila eye development.


Assuntos
Axônios/metabolismo , Drosophila melanogaster/fisiologia , Adesões Focais/metabolismo , Neuroglia/citologia , Visão Ocular/fisiologia , Animais , Axônios/fisiologia , Adesão Celular , Diferenciação Celular , Movimento Celular , Drosophila melanogaster/embriologia , Matriz Extracelular/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Discos Imaginais/citologia , Integrinas/metabolismo , Neurônios/metabolismo , Fenótipo , Células Fotorreceptoras de Invertebrados/metabolismo , Interferência de RNA , Talina/metabolismo
9.
Cerebellum ; 14(6): 624-31, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25700682

RESUMO

The cerebellar vermis is particularly vulnerable to neurodevelopmental malformations in humans and rodents. Sprague-Dawley, and Long-Evans rats exhibit spontaneous cerebellar malformations consisting of heterotopic neurons and glia in the molecular layer of the vermis. Malformations are almost exclusively found along the primary fissure and are indicative of deficits of neuronal migration during cerebellar development. In the present report, we test the prediction that genetically engineered rats on Sprague-Dawley or Long-Evans backgrounds will also exhibit the same cerebellar malformations. Consistent with our hypothesis, we found that three different transgenic lines on two different backgrounds had cerebellar malformations. Heterotopia in transgenic rats had identical cytoarchitecture as that observed in wild-type rats including altered morphology of Bergmann glia. In light of the possibility that heterotopia could affect results from behavioral studies, these data suggest that histological analyses be performed in studies of cerebellar function or development when using genetically engineered rats on these backgrounds in order to have more careful interpretation of experimental findings.


Assuntos
Vermis Cerebelar/anormalidades , Ratos Transgênicos , Animais , Vermis Cerebelar/patologia , Neuroglia/patologia , Ratos Long-Evans , Ratos Sprague-Dawley , Especificidade da Espécie
10.
Toxicol Sci ; 198(1): 128-140, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38070162

RESUMO

Evaluating the neurodevelopmental effects of thyroid-disrupting chemicals is challenging. Although some standardized developmental and reproductive toxicity studies recommend serum thyroxine (T4) measures in developing rats, extrapolating between a serum T4 reduction and neurodevelopmental outcomes is not straightforward. Previously, we showed that the blood-brain and blood-cerebrospinal fluid barriers may be affected by developmental hypothyroidism in newborn rats. Here, we hypothesized that if the brain barriers were functionally disturbed by abnormal thyroid action, then small molecules may escape from the brain tissue and into general circulation. These small molecules could then be identified in blood samples, serving as a direct readout of thyroid-mediated developmental neurotoxicity. To address these hypotheses, pregnant rats were exposed to propylthiouracil (PTU, 0 or 3 ppm) to induce thyroid hormone insufficiency, and dams were permitted to give birth. PTU significantly reduced serum T4 in postnatal offspring. Consistent with our hypothesis, we show that tight junctions of the brain barriers were abnormal in PTU-exposed pups, and the blood-brain barrier exhibited increased permeability. Next, we performed serum microRNA Sequencing (miRNA-Seq) to identify noncoding RNAs that may reflect these neurodevelopmental disturbances. Of the differentially expressed miRNAs identified, 7 were upregulated in PTU-exposed pups. Validation by qRT-PCR shows that miR-495 and miR-543-3p were similarly upregulated in males and females. Interestingly, these miRNAs have been linked to cell junction dysfunction in other models, paralleling the identified abnormalities in the rat brain. Taken together, these data show that miR-495 and miR-543-3p may be novel in vivo biomarkers of thyroid-mediated developmental neurotoxicity.


Assuntos
Hipotireoidismo , MicroRNAs , Síndromes Neurotóxicas , Animais , Feminino , Masculino , Gravidez , Ratos , Encéfalo , Hipotireoidismo/induzido quimicamente , MicroRNAs/genética , Síndromes Neurotóxicas/etiologia , Hormônios Tireóideos , Tiroxina , Regulação para Cima
11.
Toxicol Sci ; 198(1): 113-127, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38145495

RESUMO

The environmental contaminant perchlorate impairs the synthesis of thyroid hormones by reducing iodine uptake into the thyroid gland. Despite this known action, moderate doses of perchlorate do not significantly alter serum thyroid hormone in rat pups born to exposed dams. We examined perchlorate dosimetry and responsivity of the thyroid gland and brain in offspring following maternal exposure to perchlorate. Pregnant rat dams were delivered perchlorate in drinking water (0, 30, 100, 300, 1000 ppm) from gestational day 6 to postnatal day (PN) 21. Perchlorate was present in the placenta, milk, and serum, the latter declining in pups over the course of lactation. Serum and brain thyroid hormone were reduced in pups at birth but recovered to control levels by PN2. Dramatic upregulation of Nis was observed in the thyroid gland of the exposed pup. Despite the return of serum thyroid hormone to control levels by PN2, expression of several TH-responsive genes was altered in the PN14 pup brain. Contextual fear learning was unimpaired in the adults, supporting previous reports. Declining levels of serum perchlorate and a profound upregulation of Nis gene expression in the thyroid gland are consistent with the rapid return to the euthyroid state in the neonate. However, despite this recovery, thyroid hormone insufficiencies in serum and brain beginning in utero and present at birth appear sufficient to alter TH action in the fetus and subsequent trajectory of brain development. Biomarkers of that altered trajectory remain in the brain of the neonate, demonstrating that perchlorate is not devoid of effects on the developing brain.


Assuntos
Compostos de Amônio Quaternário , Resiliência Psicológica , Glândula Tireoide , Gravidez , Feminino , Ratos , Animais , Percloratos/toxicidade , Percloratos/metabolismo , Animais Recém-Nascidos , Hormônios Tireóideos
12.
Environ Int ; 190: 108838, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38963985

RESUMO

Known as "forever chemicals", per- and polyfluoroalkyl substances (PFAS) are synthetic compounds used in consumer goods but pose significant public health concerns, including disruption of the thyroid system. As thyroid hormones (THs) are required for normal brain development, PFAS may also be developmental neurotoxicants. However, this is not well understood. Here we examine the endocrine and neurodevelopmental consequences of perfluorohexane sulfonate (PFHxS) exposure in pregnant, lactating, and developing rats, and compare its effects to an anti-thyroid pharmaceutical (propylthiouracil, PTU) that induces thyroid-mediated developmental neurotoxicity. We show that PFHxS dramatically reduces maternal serum thyroxine (T4), nearly equivalently to PTU (-55 and -51%, respectively). However, only PTU increases thyroid stimulating hormone. The lactational transfer of PFHxS is significant and reduces pup serum T4 across the postnatal period. Surprisingly, brain THs are only minimally decreased by PFHxS, whereas PTU drastically diminishes them. Evaluation of brain TH action by phenotyping, RNA-Sequencing, and quantification of radial glia cell morphology supports that PTU interrupts TH signaling while PFHxS has limited to no effect. These data show that PFHxS induces abnormal serum TH profiles; however, there were no indications of hypothyroidism in the postnatal brain. We suggest the stark differences between the neurodevelopmental effects of PFHxS and a typical antithyroid agent may be due to its interaction with TH distributing proteins like transthyretin.

13.
Artigo em Inglês | MEDLINE | ID: mdl-37399178

RESUMO

Resolution in microscopy-the shortest distance between which objects can be distinguished from each other-is crucial for our ability to view details of biological samples. The theoretical resolution limit of light microscopy is 200 nm in the x,y-plane. Using stacks of x,y images, 3D reconstructions of the z-plane of a specimen can be achieved. However, because of the nature of light diffraction, the resolution of the z-plane reconstitutions is closer to 500-600 nm. Peripheral nerves of the fruit fly Drosophila melanogaster consist of several thin layers of glial cells surrounding the underlying axons. The size of these components can be well under the resolution of z-plane 3D reconstructions, thus making it difficult to determine details of coronal views through these peripheral nerves. Here, we describe a protocol to obtain and immunolabel 10-µm cryosections of whole third-instar larvae of the fruit fly Drosophila melanogaster Cryosectioning the larvae using this method converts visualization of coronal sections of the peripheral nerve into the x,y-plane and brings the resolution down from 500-600 nm to 200 nm. Theoretically, this protocol can also be used with some modifications to obtain cross sections of other tissues.

14.
Artigo em Inglês | MEDLINE | ID: mdl-37399179

RESUMO

Glial cells are essential for the proper development and functioning of the peripheral nervous system (PNS). The ability to study the biology of glial cells is therefore critical for our ability to understand PNS biology and address PNS maladies. The genetic and proteomic pathways underlying vertebrate peripheral glial biology are understandably complex, with many layers of redundancy making it sometimes difficult to study certain facets of PNS biology. Fortunately, many aspects of vertebrate peripheral glial biology are conserved with those of the fruit fly, Drosophila melanogaster With simple and powerful genetic tools and fast generation times, Drosophila presents an accessible and versatile model for studying the biology of peripheral glia. We introduce here three techniques for studying the cell biology of peripheral glia of Drosophila third-instar larvae. With fine dissection tools and common laboratory reagents, third-instar larvae can be dissected, with extraneous tissues removed, revealing the central nervous system (CNS) and PNS to be processed using a standard immunolabeling protocol. To improve the resolution of peripheral nerves in the z-plane, we describe a cryosectioning method to achieve 10- to 20-µm thick coronal sections of whole larvae, which can then be immunolabeled using a modified version of standard immunolabeling techniques. Finally, we describe a proximity ligation assay (PLA) for detecting close proximity between two proteins-thus inferring protein interaction-in vivo in third-instar larvae. These methods, further described in our associated protocols, can be used to improve our understanding of Drosophila peripheral glia biology, and thus our understanding of PNS biology.

15.
Artigo em Inglês | MEDLINE | ID: mdl-37399180

RESUMO

The ability to detect protein-protein interactions is critical for understanding the mechanisms underlying protein and cell function. Current methods to assay protein-protein interactions, such as co-immunoprecipitation (Co-IP) and fluorescence resonance energy transfer (FRET), have limitations; for example, Co-IP is an in vitro technique and may not reflect the situation in vivo, and FRET typically suffers from low signal-to-noise ratio. The proximity ligation assay (PLA) is an in situ method for inferring protein-protein interaction with a high signal-to-noise ratio. The PLA technique can indicate that two different proteins are closely associated by the ability of two secondary antibody oligonucleotide probes to hybridize when they are close to each other. This interaction generates a signal with rolling-circle amplification using fluorescent nucleotides. Although a positive result does not indicate that two proteins directly interact, it implies a potential in vivo interaction that can then be verified in vitro. PLA uses primary antibodies against the two proteins (or epitopes) of interest, one raised in mouse and the other raised in rabbit. When these antibodies bind to proteins that lie within 40 nm of each other in the tissue, complementary oligonucleotides conjugated individually to mouse and rabbit secondary antibodies can anneal to form a template for rolling-circle amplification. Using fluorescently labeled nucleotides, rolling circle amplification generates a strong fluorescent signal in areas of the tissue where the two proteins are found together that is detected using conventional fluorescence microscopy. This protocol describes how to perform PLA in vivo on the central nervous system and peripheral nervous system of third-instar larvae of the fruit fly Drosophila melanogaster.

16.
Artigo em Inglês | MEDLINE | ID: mdl-37399181

RESUMO

The ability to visualize the cells and proteins of a tissue within their original context (i.e., in vivo) is invaluable for the study of that biological system. Visualization is especially important in tissues with complex and convoluted structures, such as the neurons and glia of the nervous system. The central and peripheral nervous systems (CNS and PNS, respectively) of the third-instar larvae of the fruit fly, Drosophila melanogaster, are found on the ventral side of the larvae and are overlaid by the rest of the body tissues. Careful removal of overlying tissues while not damaging the delicate structures of the CNS and PNS is essential for proper visualization of these tissues. This protocol describes the dissection of Drosophila third-instar larvae into fillets and their subsequent immunolabeling to visualize endogenously tagged or antibody-labeled proteins and tissues in the fly CNS and PNS.

17.
Toxicol Sci ; 193(2): 192-203, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37099719

RESUMO

A number of xenobiotics interfere with thyroid hormone (TH) signaling. Although adequate supplies of TH are necessary for normal brain development, regulatory reliance on serum TH as proxies for brain TH insufficiency is fraught with significant uncertainties. A more direct causal linkage to neurodevelopmental toxicity induced by TH-system disrupting chemicals is to measure TH in the target organ of most concern, the brain. However, the phospholipid-rich matrix of brain tissue presents challenges for TH extraction and measurement. We report optimized analytical procedures to extract TH in brain tissue of rats with recoveries >80% and low detection limits for T3, rT3, and T4 (0.013, 0.033, and 0.028 ng/g, respectively). Recovery of TH is augmented by enhancing phospholipid separation from TH using an anion exchange column coupled with a stringent column wash. Quality control measures incorporating a matrix-matched calibration procedure revealed excellent recovery and consistency across a large number of samples. Application of optimized procedures revealed age-dependent increases in neonatal brain T4, T3, and rT3 on the day of birth (postnatal day, PN0), PN2, PN6, and PN14. No sex-dependent differences in brain TH were observed at these ages, and similar TH levels were evident in perfused versus non-perfused brains. Implementation of a robust and reliable method to quantify TH in the fetal and neonatal rat brain will aid in the characterization of the thyroid-dependent chemical interference on neurodevelopment. A brain- in addition to a serum-based metric will reduce uncertainties in assessment of hazard and risk on the developing brain posed by thyroid system-disrupting chemicals.


Assuntos
Rotas de Resultados Adversos , Ratos , Animais , Animais Recém-Nascidos , Hormônios Tireóideos , Glândula Tireoide/metabolismo , Encéfalo/metabolismo , Tiroxina
18.
Toxics ; 11(12)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38133428

RESUMO

Environmental contaminants are often flagged as thyroid system disruptors due to their actions to reduce serum thyroxine (T4) in rodent models. The presence of a periventricular heterotopia (PVH), a brain malformation resulting from T4 insufficiency, has been described in response to T4 decrements induced by pharmaceuticals that reduce the hormone synthesis enzyme thyroperoxidase. In this report, we extend these observations to the environmental contaminant perchlorate, an agent that interferes with thyroid status by inhibiting iodine uptake into the thyroid gland. Pregnant rat dams were administered perchlorate in their drinking water (0, 30, 100, 300, 1000 ppm) from gestational day (GD) 6 until the weaning of pups on postnatal day (PN) 21. Serum T4 was reduced in dams and fetuses in late gestation and remained lower in lactating dams. Pup serum and brain T4, however, were not reduced beyond PN0, and small PVHs were evident in the brains of offspring when assessed on PN14. To emulate the developmental time window of the brain in humans, a second study was conducted in which pups from perchlorate-exposed dams were administered perchlorate orally from PN0 to PN6. This treatment reduced serum and brain T4 in the pup and resulted in large PVH. A third study extended the period of serum and brain TH suppression in pups by coupling maternal perchlorate exposure with maternal dietary iodine deficiency (ID). No PVHs were evident in the pups from ID dams, small PVHs were observed in the offspring of dams exposed to 300 ppm of perchlorate, and very large PVHs were present in the brains of pups born to dams receiving ID and perchlorate. These findings underscore the importance of the inclusion of serum hormone profiles in pregnant dams and fetuses in in vivo screens for thyroid-system-disrupting chemicals and indicate that chemical-induced decreases in fetal rat serum that resolve in the immediate postnatal period may still harbor considerable concern for neurodevelopment in humans.

19.
Neurotoxicol Teratol ; 100: 107303, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37777095

RESUMO

Identifying xenobiotics that interrupt the thyroid axis has significant public health implications, given that thyroid hormones are required for brain development. As such, some developmental and reproductive toxicology (DART) studies now require or recommend serum total thyroxine (T4) measurements in pregnant, lactating, and developing rats. However, serum T4 concentrations are normally low in the fetus and pup which makes quantification difficult. These challenges can be circumvented by technologies like mass spectrometry, but these approaches are expensive and not always widely available. To demonstrate the feasibility of measuring T4 using a commercially available assay, we examine technical replicates of rat serum samples measured both by liquid chromatography mass spectrometry (LC/MS/MS) and radioimmunoassay (RIA). These samples were obtained from rats on gestational day 20 (dams and fetuses) or postnatal day 5 (pups), following maternal exposure to the goitrogen propylthiouracil (0-3 ppm) to incrementally decrease T4. We show that with assay modification, it is possible to measure serum T4 using low sample volumes (25-50 µL) by an RIA, including in the GD20 fetus exposed to propylthiouracil. This proof-of-concept study demonstrates the technical feasibility of measuring serum T4 in DART studies.


Assuntos
Tiroxina , Tri-Iodotironina , Gravidez , Feminino , Ratos , Animais , Propiltiouracila , Radioimunoensaio/métodos , Espectrometria de Massas em Tandem/métodos , Lactação , Feto
20.
Front Endocrinol (Lausanne) ; 14: 1090081, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36843608

RESUMO

Thyroid hormone (TH) action controls brain development in a spatiotemporal manner. Previously, we demonstrated that perinatal hypothyroidism led to formation of a periventricular heterotopia in developing rats. This heterotopia occurs in the posterior telencephalon, and its formation was preceded by loss of radial glia cell polarity. As radial glia mediate cell migration and originate in a progenitor cell niche called the ventricular zone (VZ), we hypothesized that TH action may control cell signaling in this region. Here we addressed this hypothesis by employing laser capture microdissection and RNA-Seq to evaluate the VZ during a known period of TH sensitivity. Pregnant rats were exposed to a low dose of propylthiouracil (PTU, 0.0003%) through the drinking water during pregnancy and lactation. Dam and pup THs were quantified postnatally and RNA-Seq of the VZ performed in neonates. The PTU exposure resulted in a modest increase in maternal thyroid stimulating hormone and reduced thyroxine (T4). Exposed neonates exhibited hypothyroidism and T4 and triiodothyronine (T3) were also reduced in the telencephalon. RNA-Seq identified 358 differentially expressed genes in microdissected VZ cells of hypothyroid neonates as compared to controls (q-values ≤0.05). Pathway analyses showed processes like maintenance of the extracellular matrix and cytoskeleton, cell adhesion, and cell migration were significantly affected by hypothyroidism. Immunofluorescence also demonstrated that collagen IV, F-actin, radial glia, and adhesion proteins were reduced in the VZ. Immunohistochemistry of integrin αvß3 and isoforms of both thyroid receptors (TRα/TRß) showed highly overlapping expression patterns, including enrichment in the VZ. Taken together, our results show that TH action targets multiple components of cell junctions in the VZ, and this may be mediated by both genomic and nongenomic mechanisms. Surprisingly, this work also suggests that the blood-brain and blood-cerebrospinal fluid barriers may also be affected in hypothyroid newborns.


Assuntos
Hipotireoidismo , Tiroxina , Gravidez , Feminino , Ratos , Animais , Animais Recém-Nascidos , Tiroxina/metabolismo , Antitireóideos , Hormônios Tireóideos/metabolismo , Hipotireoidismo/metabolismo , Encéfalo/metabolismo , Junções Intercelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA