Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Immunity ; 31(6): 965-73, 2009 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-20005135

RESUMO

MicroRNAs (miRNAs) contribute to both neuronal and immune cell fate, but their involvement in intertissue communication remained unexplored. The brain, via vagal secretion of acetylcholine (ACh), suppresses peripheral inflammation by intercepting cytokine production; therefore, we predicted that microRNAs targeting acetylcholinesterase (AChE) can attenuate inflammation. Here, we report that inflammatory stimuli induced leukocyte overexpression of the AChE-targeting miR-132. Injected locked nucleic acid (LNA)-modified anti-miR-132 oligonucleotide depleted miR-132 amounts while elevating AChE in mouse circulation and tissues. In transfected cells, a mutated 3'UTR miR-132 binding site increased AChE mRNA expression, whereas cells infected with a lentivirus expressing pre-miR-132 showed suppressed AChE. Transgenic mice overexpressing 3'UTR null AChE showed excessive inflammatory mediators and impaired cholinergic anti-inflammatory regulation, in spite of substantial miR-132 upregulation in brain and bone marrow. Our findings identify the AChE mRNA-targeting miR-132 as a functional regulator of the brain-to-body resolution of inflammation, opening avenues for study and therapeutic manipulations of the neuro-immune dialog.


Assuntos
Acetilcolinesterase/genética , Inflamação/enzimologia , MicroRNAs/metabolismo , Acetilcolina/metabolismo , Animais , Sequência de Bases , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Linhagem Celular , Regulação para Baixo , Feminino , Humanos , Inflamação/imunologia , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/imunologia , Lipopolissacarídeos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Transgênicos , MicroRNAs/agonistas , MicroRNAs/genética , Dados de Sequência Molecular , Oligonucleotídeos/farmacologia , Deleção de Sequência , Transdução de Sinais , Regulação para Cima
2.
Mol Ther ; 21(7): 1378-89, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23629001

RESUMO

The continued spread of HIV underscores the need to interrupt transmission. One attractive strategy, in the absence of an effective vaccine, is a topical microbicide, but the need for application around the time of sexual intercourse leads to poor patient compliance. Intravaginal (IVAG) application of CD4 aptamer-siRNA chimeras (CD4-AsiCs) targeting the HIV coreceptor CCR5, gag, and vif protected humanized mice from sexual transmission. In non-dividing cells and tissue, RNAi-mediated gene knockdown lasts for several weeks, providing an opportunity for infrequent dosing not temporally linked to sexual intercourse, when compliance is challenging. Here, we investigate the durability of gene knockdown and viral inhibition, protection afforded by CCR5 or HIV gene knockdown on their own, and effectiveness of CD4-AsiCs formulated in a gel in polarized human cervicovaginal explants and in humanized mice. CD4-AsiC-mediated gene knockdown persisted for several weeks. Cell-specific gene knockdown and protection were comparable in a hydroxyethylcellulose gel formulation. CD4-AsiCs against CCR5 or gag/vif performed as well as a cocktail in humanized mice. Transmission was completely blocked by CCR5 CD4-AsiCs applied 2 days before challenge. Significant, but incomplete, protection also occurred when exposure was delayed for 4 or 6 days. CD4-AsiCs targeting gag/vif provided some protection when administered only after exposure. These data suggest that CD4-AsiCs are a promising approach for developing an HIV microbicide.


Assuntos
Antígenos CD4/genética , Infecções por HIV/terapia , RNA Interferente Pequeno/genética , Animais , Feminino , Citometria de Fluxo , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Receptores CCR5/genética , Receptores CCR5/metabolismo , Vagina/metabolismo
3.
Sci Rep ; 12(1): 1303, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35079047

RESUMO

Aptamers, due to their small size, strong target affinity, and ease of chemical modification, are ideally suited for molecular detection technologies. Here, we describe successful use of aptamer technology in a consumer device for the detection of peanut antigen in food. The novel aptamer-based protein detection method is robust across a wide variety of food matrices and sensitive to peanut protein at concentrations as low as 12.5 ppm (37.5 µg peanut protein in the sample). Integration of the assay into a sensitive, stable, and consumer friendly portable device will empower users to easily and quickly assess the presence of peanut allergens in foods before eating. With many food reactions occurring outside the home, the type of technology described here has significant potential to improve lives for children and families.


Assuntos
Alérgenos/análise , Alérgenos/imunologia , Antígenos de Plantas/análise , Antígenos de Plantas/imunologia , Aptâmeros de Nucleotídeos/metabolismo , Arachis/química , Análise de Alimentos/métodos , Hipersensibilidade Alimentar/prevenção & controle , Proteínas de Membrana/análise , Proteínas de Membrana/imunologia , Proteínas de Plantas/análise , Proteínas de Plantas/imunologia , Testes Imediatos , Humanos , Ligação Proteica , Sensibilidade e Especificidade
4.
Mol Cancer Ther ; 14(10): 2279-91, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26264278

RESUMO

Effective therapeutic strategies for in vivo siRNA delivery to knockdown genes in cells outside the liver are needed to harness RNA interference for treating cancer. EpCAM is a tumor-associated antigen highly expressed on common epithelial cancers and their tumor-initiating cells (TIC, also known as cancer stem cells). Here, we show that aptamer-siRNA chimeras (AsiC, an EpCAM aptamer linked to an siRNA sense strand and annealed to the siRNA antisense strand) are selectively taken up and knock down gene expression in EpCAM(+) cancer cells in vitro and in human cancer biopsy tissues. PLK1 EpCAM-AsiCs inhibit colony and mammosphere formation (in vitro TIC assays) and tumor initiation by EpCAM(+) luminal and basal-A triple-negative breast cancer (TNBC) cell lines, but not EpCAM(-) mesenchymal basal-B TNBCs, in nude mice. Subcutaneously administered EpCAM-AsiCs concentrate in EpCAM(+) Her2(+) and TNBC tumors and suppress their growth. Thus, EpCAM-AsiCs provide an attractive approach for treating epithelial cancer.


Assuntos
Aptâmeros de Nucleotídeos/administração & dosagem , Neoplasias da Mama/patologia , Neoplasias Epiteliais e Glandulares/patologia , Células-Tronco Neoplásicas/fisiologia , RNA Interferente Pequeno/administração & dosagem , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Sequência de Bases , Neoplasias da Mama/metabolismo , Carcinogênese/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Molécula de Adesão da Célula Epitelial , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos Nus , Transplante de Neoplasias , Neoplasias Epiteliais e Glandulares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Carga Tumoral , Quinase 1 Polo-Like
5.
J Mol Neurosci ; 53(3): 306-15, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24258317

RESUMO

Selective serotonin reuptake inhibitors (SSRIs) show anti-inflammatory effects, suggesting a possible interaction with both Toll-like-receptor 4 (TLR4) responses and cholinergic signaling through as yet unclear molecular mechanism(s). Our results of structural modeling support the concept that the antidepressant fluoxetine physically interacts with the TLR4-myeloid differentiation factor-2 complex at the same site as bacterial lipopolysaccharide (LPS). We also demonstrate reduced LPS-induced pro-inflammatory interleukin-6 and tumor necrosis factor alpha in human peripheral blood mononuclear cells preincubated with fluoxetine. Furthermore, we show that fluoxetine intercepts the LPS-induced decreases in intracellular acetylcholinesterase (AChE-S) and that AChE-S interacts with the nuclear factor kappa B (NFκB)-activating intracellular receptor for activated C kinase 1 (RACK1). This interaction may prevent NFκB activation by residual RACK1 and its interacting protein kinase PKCßII. Our findings attribute the anti-inflammatory properties of SSRI to surface membrane interference with leukocyte TLR4 activation accompanied by intracellular limitation of pathogen-inducible changes in AChE-S, RACK1, and PKCßII.


Assuntos
Acetilcolinesterase/metabolismo , Anti-Inflamatórios/farmacologia , Fluoxetina/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores de Superfície Celular/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Acetilcolinesterase/química , Sequência de Aminoácidos , Sítios de Ligação , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/metabolismo , Proteínas de Ligação ao GTP/química , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Proteínas de Neoplasias/química , Ligação Proteica , Proteína Quinase C beta/metabolismo , Receptores de Quinase C Ativada , Receptores de Superfície Celular/química , Receptor 4 Toll-Like/química , Receptor 4 Toll-Like/metabolismo
8.
Front Mol Neurosci ; 5: 30, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22448158

RESUMO

Hematopoietic stem cells (HSCs) differentiate and generate all blood cell lineages while maintaining self-renewal ability throughout life. Systemic responses to stressful insults, either psychological or physical exert both stimulating and down-regulating effects on these dynamic members of the immune system. Stress-facilitated division and re-oriented differentiation of progenitor cells modifies hematopoietic cell type composition, while enhancing cytokine production and promoting inflammation. Inversely, stress-induced increases in the neurotransmitter acetylcholine (ACh) act to mitigate inflammatory response and regain homeostasis. This signaling process is terminated when ACh is hydrolyzed by acetylcholinesterase (AChE). Alternative splicing, which is stress-modified, changes the composition of AChE variants, modifying their terminal sequences, susceptibility for microRNA suppression, and sub-cellular localizations. Intriguingly, the effects of stress and AChE variants on hematopoietic development and inflammation in health and disease are both subject to small molecule as well as oligonucleotide-mediated manipulations in vitro and in vivo. The therapeutic agents can thus be targeted to the enzyme protein, its encoding mRNA transcripts, or the regulator microRNA-132, opening new venues for therapeutic interference with multiple nervous and immune system diseases.

9.
PLoS One ; 6(12): e28727, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22174879

RESUMO

The purpose of our study was to understand if Toll-like receptor 9 (TLR9) activation could contribute to the control of inflammation in Sjogren's syndrome. To this end, we manipulated TLR9 signaling in non-obese diabetic (NOD) and TLR9(-/-) mice using agonistic CpG oligonucleotide aptamers, TLR9 inhibitors, and the in-house oligonucleotide BL-7040. We then measured salivation, inflammatory response markers, and expression of proteins downstream to NF-κB activation pathways. Finally, we labeled proteins of interest in salivary gland biopsies from Sjogren's syndrome patients, compared to Sicca syndrome controls. We show that in NOD mice BL-7040 activates TLR9 to induce an alternative NF-κB activation mode resulting in increased salivation, elevated anti-inflammatory response in salivary glands, and reduced peripheral AChE activity. These effects were more prominent and also suppressible by TLR9 inhibitors in NOD mice, but TLR9(-/-) mice were resistant to the salivation-promoting effects of CpG oligonucleotides and BL-7040. Last, salivary glands from Sjogren's disease patients showed increased inflammatory and decreased anti-inflammatory biomarkers, in addition to decreased levels of alternative NF-κB pathway proteins. In summary, we have demonstrated that activation of TLR9 by BL-7040 leads to non-canonical activation of NF-κB, promoting salivary functioning and down-regulating inflammation. We propose that BL-7040 could be beneficial in treating Sjogren's syndrome and may be applicable to additional autoimmune syndromes.


Assuntos
NF-kappa B/metabolismo , Transdução de Sinais , Síndrome de Sjogren/metabolismo , Síndrome de Sjogren/patologia , Animais , Biomarcadores/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/metabolismo , Leucócitos Mononucleares/patologia , Camundongos , Saliva/metabolismo , Glândulas Salivares/metabolismo , Glândulas Salivares/patologia , Glândulas Salivares/fisiopatologia , Síndrome de Sjogren/fisiopatologia , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 9/deficiência
10.
PLoS One ; 3(6): e2392, 2008 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-18545673

RESUMO

BACKGROUND: The vast majority of human genes (>70%) are alternatively spliced. Although alternative pre-mRNA processing is modified in multiple tumors, alternative hyper-splicing signatures specific to particular tumor types are still lacking. Here, we report the use of Affymetrix Human Exon Arrays to spot hyper-splicing events characteristic of myasthenia gravis (MG)-thymoma, thymic tumors which develop in patients with MG and discriminate them from colon cancer changes. METHODOLOGY/PRINCIPAL FINDINGS: We combined GO term to parent threshold-based and threshold-independent ad-hoc functional statistics with in-depth analysis of key modified transcripts to highlight various exon-specific changes. These denote alternative splicing in MG-thymoma tumors compared to healthy human thymus and to in-house and Affymetrix datasets from colon cancer and healthy tissues. By using both global and specific, term-to-parent Gene Ontology (GO) statistical comparisons, our functional integrative ad-hoc method allowed the detection of disease-relevant splicing events. CONCLUSIONS/SIGNIFICANCE: Hyper-spliced transcripts spanned several categories, including the tumorogenic ERBB4 tyrosine kinase receptor and the connective tissue growth factor CTGF, as well as the immune function-related histocompatibility gene HLA-DRB1 and interleukin (IL)19, two muscle-specific collagens and one myosin heavy chain gene; intriguingly, a putative new exon was discovered in the MG-involved acetylcholinesterase ACHE gene. Corresponding changes in spliceosome composition were indicated by co-decreases in the splicing factors ASF/SF(2) and SC35. Parallel tumor-associated changes occurred in colon cancer as well, but the majority of the apparent hyper-splicing events were particular to MG-thymoma and could be validated by Fluorescent In-Situ Hybridization (FISH), Reverse Transcription-Polymerase Chain Reaction (RT-PCR) and mass spectrometry (MS) followed by peptide sequencing. Our findings demonstrate a particular alternative hyper-splicing signature for transcripts over-expressed in MG-thymoma, supporting the hypothesis that alternative hyper-splicing contributes to shaping the biological functions of these and other specialized tumors and opening new venues for the development of diagnosis and treatment approaches.


Assuntos
Processamento Alternativo , Éxons , Neoplasias do Timo/genética , Neoplasias do Colo/genética , Humanos , Hibridização in Situ Fluorescente , Proteômica , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Blood ; 109(10): 4383-91, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17272501

RESUMO

Cholinergic signaling and acetylcholinesterase (AChE) influence immune response and inflammation. Autoimmune myasthenia gravis (MG) is mediated by antibodies to the acetylcholine receptor and current therapy is based on anti-AChE drugs. MG is associated with thymic hyperplasia, showing signs of inflammation. The objectives of this study were to analyze the involvement of AChE variants in thymic hyperplasia. We found lower hydrolytic activities in the MG thymus compared with adult controls, accompanied by translocation of AChE-R from the cytoplasm to the membrane and increased expression of the signaling protein kinase PKC-betaII. To explore possible causal association of AChE-R changes with thymic composition and function, we used an AChE-R transgenic model and showed smaller thymic medulla compared with strain-matched controls, indicating that AChE-R overexpression interferes with thymic differentiation mechanisms. Interestingly, AChE-R transgenic mice showed increased numbers of CD4(+)CD8(+) cells that were considerably more resistant in vitro to apoptosis than normal thymocytes, suggesting possibly altered positive selection. We further analyzed microarray data of MG thymic hyperplasia compared with healthy controls and found continuous and discrete changes in AChE-annotated GO categories. Together, these findings show that modified AChE gene expression and properties are causally involved in thymic function and development.


Assuntos
Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Processamento Alternativo , Miastenia Gravis/genética , Miastenia Gravis/metabolismo , Timo/enzimologia , Adolescente , Adulto , Idoso , Animais , Células Cultivadas , Feminino , Regulação Enzimológica da Expressão Gênica , Humanos , Lactente , Recém-Nascido , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Timo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA