Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell Mol Life Sci ; 80(6): 151, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198527

RESUMO

Antimicrobial peptides (AMPs) are major components of the innate immune defense. Accumulating evidence suggests that the antibacterial activity of many AMPs is dependent on the formation of amyloid-like fibrils. To identify novel fibril forming AMPs, we generated a spleen-derived peptide library and screened it for the presence of amyloidogenic peptides. This approach led to the identification of a C-terminal 32-mer fragment of alpha-hemoglobin, termed HBA(111-142). The non-fibrillar peptide has membranolytic activity against various bacterial species, while the HBA(111-142) fibrils aggregated bacteria to promote their phagocytotic clearance. Further, HBA(111-142) fibrils selectively inhibited measles and herpes viruses (HSV-1, HSV-2, HCMV), but not SARS-CoV-2, ZIKV and IAV. HBA(111-142) is released from its precursor by ubiquitous aspartic proteases under acidic conditions characteristic at sites of infection and inflammation. Thus, HBA(111-142) is an amyloidogenic AMP that may specifically be generated from a highly abundant precursor during bacterial or viral infection and may play an important role in innate antimicrobial immune responses.


Assuntos
COVID-19 , Infecção por Zika virus , Zika virus , Humanos , Peptídeos , Amiloide/química , Antibacterianos/farmacologia , Hemoglobinas
2.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36499357

RESUMO

Advanced derivatives of the Endogenous Peptide Inhibitor of CXCR4 (EPI-X4) have shown therapeutic efficacy upon topical administration in animal models of asthma and dermatitis. Here, we studied the plasma stability of the EPI-X4 lead compounds WSC02 and JM#21, using mass spectrometry to monitor the chemical integrity of the peptides and a functional fluorescence-based assay to determine peptide function in a CXCR4-antibody competition assay. Although mass spectrometry revealed very rapid disappearance of both peptides in human plasma within seconds, the functional assay revealed a significantly higher half-life of 9 min for EPI-X4 WSC02 and 6 min for EPI-X4 JM#21. Further analyses demonstrated that EPI-X4 WSC02 and EPI-X4 JM#21 interact with low molecular weight plasma components and serum albumin. Albumin binding is mediated by the formation of a disulfide bridge between Cys10 in the EPI-X4 peptides and Cys34 in albumin. These covalently linked albumin-peptide complexes have a higher stability in plasma as compared with the non-bound peptides and retain the ability to bind and antagonize CXCR4. Remarkably, chemically synthesized albumin-EPI-X4 conjugates coupled by non-breakable bonds have a drastically increased plasma stability of over 2 h. Thus, covalent coupling of EPI-X4 to albumin in vitro before administration or in vivo post administration may significantly increase the pharmacokinetic properties of this new class of CXCR4 antagonists.


Assuntos
Receptores CXCR4 , Albumina Sérica Humana , Animais , Humanos , Receptores CXCR4/metabolismo , Peptídeos/química , Meia-Vida , Albumina Sérica/metabolismo
3.
J Transl Med ; 19(1): 190, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33941197

RESUMO

BACKGROUND: Endogenous Peptide Inhibitor of CXCR4 (EPI-X4) is a natural antagonist of the CXC chemokine receptor 4 (CXCR4). EPI-X4 is a 16-mer peptide that is released from human serum albumin (HSA) by acidic aspartic proteases such as Cathepsin D and E. Since human serum albumin (HSA) is an important medicinal substance we asked whether different pharmaceutical HSA products contain EPI-X4 which could have been generated during manufacturing and whether HSA can serve as a substrate for cathepsins despite of the presence of stabilizers like caprylate. METHODS: Eight pharmaceutical HSA preparations representing all currently used fractionation technologies were analyzed. The previously described specific EPI-X4 ELISA was used for quantification; in vitro EPI-X4 generation by acidification in the presence or absence of cathepsins was followed by quantification with ELISA. RESULTS: None of the pharmaceutical HSA preparations tested contained EPI-X4. Acidification of HSA did not generate EPI-X4. Addition of cathepsins D and E to acidified HSA yielded high concentrations of EPI-X4 in all HSA preparations, indistinguishable between individual products. CONCLUSION: Medicinal HSA preparations per se do not contain EPI-X4, but will replenish its precursor which can be cleaved to EPI-X4 in vivo, environmental conditions permitting.


Assuntos
Preparações Farmacêuticas , Receptores CXCR4 , Humanos , Peptídeos , Albumina Sérica Humana , Transdução de Sinais
4.
J Med Chem ; 66(22): 15189-15204, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37940118

RESUMO

EPI-X4, a natural peptide CXCR4 antagonist, shows potential for treating inflammation and cancer, but its short plasma stability limits its clinical application. We aimed to improve the plasma stability of EPI-X4 analogues without compromising CXCR4 antagonism. Our findings revealed that only the peptide N-terminus is prone to degradation. Consequently, incorporating d-amino acids or acetyl groups in this region enhanced peptide stability in plasma. Notably, EPI-X4 leads 5, 27, and 28 not only retained their CXCR4 binding and antagonism but also remained stable in plasma for over 8 h. Molecular dynamic simulations showed that these modified analogues bind similarly to CXCR4 as the original peptide. To further increase their systemic half-lives, we conjugated these stabilized analogues with large polymers and albumin binders. These advances highlight the potential of the optimized EPI-X4 analogues as promising CXCR4-targeted therapeutics and set the stage for more detailed preclinical assessments.


Assuntos
Infecções por HIV , HIV-1 , Humanos , HIV-1/metabolismo , Peptídeos/química , Receptores CXCR4/metabolismo , Albuminas/metabolismo , Transdução de Sinais , Aminas/metabolismo
5.
J Clin Virol ; 147: 105062, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34995991

RESUMO

Since diagnostic sampling material must be considered as infectious, we evaluated whether extraction buffers of SARS-CoV-2 rapid antigen test kits may inactivate SARS-CoV-2. Of concern, seven of nine tested buffers lacked potent virucidal activity. To reduce risk of infection during assay performance, virucidal antigen extraction buffers that efficiently inactivate virus should replace the extraction buffers in these commercially available point-of-care devices.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Testes Imunológicos , Sistemas Automatizados de Assistência Junto ao Leito
6.
EBioMedicine ; 75: 103761, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34929493

RESUMO

BACKGROUND: Heterologous COVID-19 vaccination regimens combining vector- and mRNA-based vaccines are already administered, but data on solicited adverse reactions, immunological responses and elicited protection are limited. METHODS: To evaluate the reactogenicity and humoral as well as cellular immune responses towards most prevalent SARS-CoV-2 variants after a heterologous ChAdOx1 nCoV-19 BNT162b2 prime-boost vaccination, we analysed a cohort of 26 clinic employees aged 25-46 (median 30.5) years who received a ChAdOx1 nCoV-19 prime followed by a BNT162b2 boost after an 8-week interval. Serological data were compared to a cohort which received homologous BNT162b2 vaccination with a 3-week interval (14 individuals aged 25-65, median 42). FINDINGS: Self-reported solicited symptoms after ChAdOx1 nCoV-19 prime were in line with previous reports and more severe than after the BNT162b2 boost. Antibody titres increased significantly over time resulting in strong neutralization titres two weeks after the BNT162b2 boost and subsequently slightly decreased over the course of 17 weeks. At the latest time point measured, all analysed sera retained neutralizing activity against the currently dominant Delta (B.1.617.2) variant. Two weeks post boost, neutralizing activity against the Alpha (B.1.1.7) and immune-evading Beta (B.1.351) variant was ∼4-fold higher than in individuals receiving homologous BNT162b2 vaccination. No difference was observed in neutralization of Kappa (B.1.617.1). In addition, heterologous vaccination induced CD4+ and CD8+ T cells reactive to SARS-CoV-2 spike peptides of all analysed variants; Wuhan-Hu-1, Alpha, Beta, Gamma (P.1), and Delta. INTERPRETATION: In conclusion, heterologous ChAdOx1 nCoV-19 / BNT162b2 prime-boost vaccination is not associated with serious adverse events and induces potent humoral and cellular immune responses. The Alpha, Beta, Delta, and Kappa variants of spike are potently neutralized by sera from all participants and reactive T cells recognize spike peptides of all tested variants. These results suggest that this heterologous vaccination regimen is at least as immunogenic and protective as homologous vaccinations and also offers protection against current variants of concern. FUNDING: This project has received funding from the European Union's Horizon 2020 research and innovation programme, the German Research Foundation, the BMBF, the Robert Koch Institute (RKI), the Baden-Württemberg Stiftung, the county of Lower Saxony, the Ministry for Science, Research and the Arts of Baden-Württemberg, Germany, and the National Institutes of Health.


Assuntos
Anticorpos Neutralizantes/imunologia , Vacina BNT162/administração & dosagem , COVID-19/prevenção & controle , ChAdOx1 nCoV-19/administração & dosagem , Imunidade Celular/efeitos dos fármacos , Imunização Secundária , SARS-CoV-2/imunologia , Linfócitos T/imunologia , Adulto , Vacina BNT162/imunologia , COVID-19/epidemiologia , COVID-19/imunologia , ChAdOx1 nCoV-19/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência
7.
Adv Sci (Weinh) ; 9(20): e2201378, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35543527

RESUMO

Inhibitors of viral cell entry based on poly(styrene sulfonate) and its core-shell nanoformulations based on gold nanoparticles are investigated against a panel of viruses, including clinical isolates of SARS-CoV-2. Macromolecular inhibitors are shown to exhibit the highly sought-after broad-spectrum antiviral activity, which covers most analyzed enveloped viruses and all of the variants of concern for SARS-CoV-2 tested. The inhibitory activity is quantified in vitro in appropriate cell culture models and for respiratory viral pathogens (respiratory syncytial virus and SARS-CoV-2) in mice. Results of this study comprise a significant step along the translational path of macromolecular inhibitors of virus cell entry, specifically against enveloped respiratory viruses.


Assuntos
Tratamento Farmacológico da COVID-19 , Nanopartículas Metálicas , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Ouro , Camundongos , SARS-CoV-2 , Internalização do Vírus
8.
JACS Au ; 2(9): 2187-2202, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36186568

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 presents a global health emergency. Therapeutic options against SARS-CoV-2 are still very limited but urgently required. Molecular tweezers are supramolecular agents that destabilize the envelope of viruses resulting in a loss of viral infectivity. Here, we show that first-generation tweezers, CLR01 and CLR05, disrupt the SARS-CoV-2 envelope and abrogate viral infectivity. To increase the antiviral activity, a series of 34 advanced molecular tweezers were synthesized by insertion of aliphatic or aromatic ester groups on the phosphate moieties of the parent molecule CLR01. A structure-activity relationship study enabled the identification of tweezers with a markedly enhanced ability to destroy lipid bilayers and to suppress SARS-CoV-2 infection. Selected tweezer derivatives retain activity in airway mucus and inactivate the SARS-CoV-2 wildtype and variants of concern as well as respiratory syncytial, influenza, and measles viruses. Moreover, inhibitory activity of advanced tweezers against respiratory syncytial virus and SARS-CoV-2 was confirmed in mice. Thus, potentiated tweezers are broad-spectrum antiviral agents with great prospects for clinical development to combat highly pathogenic viruses.

9.
Commun Biol ; 4(1): 1113, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34552197

RESUMO

EPI-X4, a 16-mer fragment of albumin, is a specific endogenous antagonist and inverse agonist of the CXC-motif-chemokine receptor 4 (CXCR4) and thus a key regulator of CXCR4 function. Accordingly, activity-optimized synthetic derivatives of EPI-X4 are promising leads for the therapy of CXCR4-linked disorders such as cancer or inflammatory diseases. We investigated the binding of EPI-X4 to CXCR4, which so far remained unclear, by means of biomolecular simulations combined with experimental mutagenesis and activity studies. We found that EPI-X4 interacts through its N-terminal residues with CXCR4 and identified its key interaction motifs, explaining receptor antagonization. Using this model, we developed shortened EPI-X4 derivatives (7-mers) with optimized receptor antagonizing properties as new leads for the development of CXCR4 inhibitors. Our work reveals the molecular details and mechanism by which the first endogenous peptide antagonist of CXCR4 interacts with its receptor and provides a foundation for the rational design of improved EPI-X4 derivatives.


Assuntos
Simulação de Acoplamento Molecular , Fragmentos de Peptídeos/genética , Receptores CXCR4/genética , Albumina Sérica/genética , Simulação por Computador , Humanos , Modelos Genéticos , Fragmentos de Peptídeos/metabolismo , Receptores CXCR4/metabolismo , Albumina Sérica/metabolismo , Transdução de Sinais
10.
Acta Pharm Sin B ; 11(9): 2694-2708, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34589390

RESUMO

Aberrant CXCR4/CXCL12 signaling is involved in many pathophysiological processes such as cancer and inflammatory diseases. A natural fragment of serum albumin, named EPI-X4, has previously been identified as endogenous peptide antagonist and inverse agonist of CXCR4 and is a promising compound for the development of improved analogues for the therapy of CXCR4-associated diseases. To generate optimized EPI-X4 derivatives we here performed molecular docking analysis to identify key interaction motifs of EPI-X4/CXCR4. Subsequent rational drug design allowed to increase the anti-CXCR4 activity of EPI-X4. The EPI-X4 derivative JM#21 bound CXCR4 and suppressed CXCR4-tropic HIV-1 infection more efficiently than the clinically approved small molecule CXCR4 antagonist AMD3100. EPI-X4 JM#21 did not exert toxic effects in zebrafish embryos and suppressed allergen-induced infiltration of eosinophils and other immune cells into the airways of animals in an asthma mouse model. Moreover, topical administration of the optimized EPI-X4 derivative efficiently prevented inflammation of the skin in a mouse model of atopic dermatitis. Thus, rationally designed EPI-X4 JM#21 is a novel potent antagonist of CXCR4 and the first CXCR4 inhibitor with therapeutic efficacy in atopic dermatitis. Further clinical development of this new class of CXCR4 antagonists for the therapy of atopic dermatitis, asthma and other CXCR4-associated diseases is highly warranted.

11.
Sci Rep ; 10(1): 16036, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994431

RESUMO

C-X-C chemokine receptor type 4 (CXCR4) is involved in several intractable disease processes, including HIV infection, cancer cell metastasis, leukemia cell progression, rheumatoid arthritis, asthma and pulmonary fibrosis. Thus, CXCR4 represents a promising drug target and several CXCR4 antagonizing agents are in preclinical or clinical development. Important parameters in drug lead evaluation are determination of binding affinities to the receptor and assessment of their stability and activity in plasma or blood of animals and humans. Here, we designed a microtiter plate-based CXCR4 antibody competition assay that enables to measure inhibitory concentrations (IC50 values) and affinity constants (Ki values) of CXCR4 targeting drugs. The assay is based on the observation that most if not all CXCR4 antagonists compete with binding of the fluorescence-tagged CXCR4 antibody 12G5 to the receptor. We demonstrate that this antibody-competition assay allows a convenient and cheap determination of binding affinities of various CXCR4 antagonists in living cells within just 3 h. Moreover, the assay can be performed in the presence of high concentrations of physiologically relevant body fluids, and thus is a useful readout to evaluate stability (i.e. half-life) of CXCR4 ligands in serum/plasma, and even whole human and mouse blood ex vivo. Thus, this optimized 12G5 antibody-competition assay allows a robust and convenient determination and calculation of various important pharmacological parameters of CXCR4 receptor-drug interaction and may not only foster future drug development but also animal welfare by reducing the number of experimental animals.


Assuntos
Receptores CXCR4/metabolismo , Adulto , Animais , Anticorpos , Afinidade de Anticorpos/imunologia , Feminino , Voluntários Saudáveis , Humanos , Concentração Inibidora 50 , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasma/metabolismo , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/imunologia , Transdução de Sinais
12.
Antiviral Res ; 181: 104882, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32738255

RESUMO

SARS-CoV-2 is a novel pandemic coronavirus that caused a global health and economic crisis. The development of efficient drugs and vaccines against COVID-19 requires detailed knowledge about SARS-CoV-2 biology. Several techniques to detect SARS-CoV-2 infection have been established, mainly based on counting infected cells by staining plaques or foci, or by quantifying the viral genome by PCR. These methods are laborious, time-consuming and expensive and therefore not suitable for a high sample throughput or rapid diagnostics. We here report a novel enzyme-based immunodetection assay that directly quantifies the amount of de novo synthesized viral spike protein within fixed and permeabilized cells. This in-cell ELISA enables a rapid and quantitative detection of SARS-CoV-2 infection in microtiter format, regardless of the virus isolate or target cell culture. It follows the established method of performing ELISA assays and does not require expensive instrumentation. Utilization of the in-cell ELISA allows to e.g. determine TCID50 of virus stocks, antiviral efficiencies (IC50 values) of drugs or neutralizing activity of sera. Thus, the in-cell spike ELISA represents a promising alternative to study SARS-CoV-2 infection and inhibition and may facilitate future research.


Assuntos
Anticorpos Antivirais/imunologia , Betacoronavirus/imunologia , Infecções por Coronavirus/virologia , Ensaio de Imunoadsorção Enzimática/métodos , Pneumonia Viral/virologia , Síndrome Respiratória Aguda Grave/virologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Betacoronavirus/isolamento & purificação , COVID-19 , Chlorocebus aethiops , Infecções por Coronavirus/diagnóstico , Humanos , Pandemias , Pneumonia Viral/diagnóstico , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/diagnóstico , Glicoproteína da Espícula de Coronavírus/genética , Células Vero , Ensaio de Placa Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA