Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 150(4): 2624, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34717470

RESUMO

Efficient nondestructive qualification of additively manufactured (AM) metallic parts is vital for the current and future adoption of AM parts throughout several industries. Resonant ultrasound spectroscopy (RUS) is a promising method for the qualification and characterization of AM parts. Although the adoption of RUS in this setting is emerging, the influence of residual stress and texture, which are both very common in AM parts, is not well understood. In this article, a stress- and texture-dependent constitutive relation is used to study the influence on free vibrational behavior in a RUS setting. The results that follow from using the Rayleigh-Ritz method and finite element analysis suggest that residual stress and texture have a significant impact on the resonance frequencies and mode shapes. These results support the potential of using RUS to sense texture and residual stress in AM parts. Additionally, these results suggest that RUS measurements could be misinterpreted when the stress and texture are not accounted for, which could lead to a false positive/negative diagnosis when qualifying AM parts.

2.
J Acoust Soc Am ; 150(4): 2409, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34717444

RESUMO

Metal additive manufacturing is a fabrication method that forms a part by fusing layers of powder to one another. An energy source, such as a laser, is commonly used to heat the metal powder sufficiently to cause a molten pool to form, which is known as the melt pool. The melt pool can exist in the conduction or the keyhole mode where the material begins to rapidly evaporate. The interaction between the laser and the material is physically complex and difficult to predict or measure. In this article, high-speed X-ray imaging was combined with immersion ultrasound to obtain synchronized measurements of stationary laser-generated melt pools. Furthermore, two-dimensional and three-dimensional finite-element simulations were conducted to help explain the ultrasonic response in the experiments. In particular, the time-of-flight and amplitude in pulse-echo configuration were observed to have a linear relationship to the depth of the melt pool. These results are promising for the use of ultrasound to characterize the melt pool behavior and for finite-element simulations to aid in interpretation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA