Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Biol ; 28(16): 2544-2556.e5, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30100339

RESUMO

Aging (senescence) is characterized by the development of numerous pathologies, some of which limit lifespan. Key to understanding aging is discovery of the mechanisms (etiologies) that cause senescent pathology. In C. elegans, a major senescent pathology of unknown etiology is atrophy of its principal metabolic organ, the intestine. Here we identify a cause of not only this pathology but also of yolky lipid accumulation and redistribution (a form of senescent obesity): autophagy-mediated conversion of intestinal biomass into yolk. Inhibiting intestinal autophagy or vitellogenesis rescues both visceral pathologies and can also extend lifespan. This defines a disease syndrome leading to multimorbidity and contributing to late-life mortality. Activation of gut-to-yolk biomass conversion by insulin/IGF-1 signaling (IIS) promotes reproduction and senescence. This illustrates how major, IIS-promoted senescent pathologies in C. elegans can originate not from damage accumulation but from direct effects of futile, continued action of a wild-type biological program (vitellogenesis).


Assuntos
Envelhecimento/fisiologia , Autofagia/fisiologia , Caenorhabditis elegans/fisiologia , Gema de Ovo/metabolismo , Intestinos/fisiologia , Vitelogênese/fisiologia , Animais , Transdução de Sinais
2.
NPJ Aging Mech Dis ; 4: 6, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29928508

RESUMO

A long-standing belief is that aging (senescence) is the result of stochastic damage accumulation. Alternatively, senescent pathology may also result from late-life, wild-type gene action (i.e., antagonistic pleiotropy, as argued by Williams) leading to non-adaptive run-on of developmental programs (or quasi-programs) (as suggested more recently by Blagosklonny). In this study, we use existing and new data to show how uterine tumors, a prominent form of senescent pathology in the nematode Caenorhabditis elegans, likely result from quasi-programs. Such tumors develop from unfertilized oocytes which enter the uterus and become hypertrophic and replete with endoreduplicated chromatin masses. Tumor formation begins with ovulation of unfertilized oocytes immediately after exhaustion of sperm stocks. We show that the timing of this transition between program and quasi-program (i.e., the onset of senescence), and the onset of tumor formation, depends upon the timing of sperm depletion. We identify homology between uterine tumors and mammalian ovarian teratomas, which both develop from oocytes that fail to mature after meiosis I. In teratomas, futile activation of developmental programs leads to the formation of differentiated structures within the tumor. We report that older uterine tumors express markers of later embryogenesis, consistent with teratoma-like activation of developmental programs. We also present evidence of coupling of distal gonad atrophy to oocyte hypertrophy. This study shows how the Williams Blagosklonny model can provide a mechanistic explanation of this component of C. elegans aging. It also suggests etiological similarity between teratoma and some forms of senescent pathology, insofar as both are caused by quasi-programs.

3.
Nat Commun ; 8: 15458, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28534519

RESUMO

Ageing generates senescent pathologies, some of which cause death. Interventions that delay or prevent lethal pathologies will extend lifespan. Here we identify life-limiting pathologies in Caenorhabditis elegans with a necropsy analysis of worms that have died of old age. Our results imply the presence of multiple causes of death. Specifically, we identify two classes of corpse: early deaths with a swollen pharynx (which we call 'P deaths'), and later deaths with an atrophied pharynx (termed 'p deaths'). The effects of interventions on lifespan can be broken down into changes in the frequency and/or timing of either form of death. For example, glp-1 mutation only delays p death, while eat-2 mutation reduces P death. Combining pathology and mortality analysis allows mortality profiles to be deconvolved, providing biological meaning to complex survival and mortality profiles.


Assuntos
Envelhecimento/genética , Caenorhabditis elegans/fisiologia , Morte , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Escherichia coli , Longevidade/genética , Microscopia , Mutação , Estresse Oxidativo/efeitos dos fármacos , Faringe/microbiologia , Faringe/fisiopatologia , Software , Cicatrização
4.
Aging Cell ; 16(5): 1191-1194, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28612944

RESUMO

In C. elegans, the skn-1 gene encodes a transcription factor that resembles mammalian Nrf2 and activates a detoxification response. skn-1 promotes resistance to oxidative stress (Oxr) and also increases lifespan, and it has been suggested that the former causes the latter, consistent with the theory that oxidative damage causes aging. Here, we report that effects of SKN-1 on Oxr and longevity can be dissociated. We also establish that skn-1 expression can be activated by the DAF-16/FoxO transcription factor, another central regulator of growth, metabolism, and aging. Notably, skn-1 is required for Oxr but not increased lifespan resulting from over-expression of DAF-16; concomitantly, DAF-16 over-expression rescues the short lifespan of skn-1 mutants but not their hypersensitivity to oxidative stress. These results suggest that SKN-1 promotes longevity by a mechanism other than protection against oxidative damage.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento , Longevidade/genética , Fatores de Transcrição/genética , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Estresse Oxidativo , Interferência de RNA , Transdução de Sinais , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo
5.
Oncotarget ; 7(26): 39082-39096, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27256978

RESUMO

Aging (senescence) includes causal mechanisms (etiologies) of late-life disease, which remain poorly understood. According to the recently proposed hyperfunction theory, based on the older theory of antagonistic pleiotropy, senescent pathologies can arise from futile, post-reproductive run-on of processes that in early life promote fitness. Here we apply this idea to investigate the etiology of senescent pathologies in the reproductive system of Caenorhabditis elegans hermaphrodites, particularly distal gonad degeneration and disintegration. Hermaphrodite germ cells frequently undergo "physiological" (non-damage-induced) apoptosis (PA) to provision growing oocytes. Run-on of such PA is a potential cause of age-related gonad degeneration. We document the continuation of germline apoptosis in later life, and report that genetically blocking or increasing PA retards or accelerates degeneration, respectively. In wild-type males, which lack germ line apoptosis, gonad disintegration does not occur. However, mutational induction of PA in males does not lead to gonad disintegration. These results suggest that as germ-cell proliferation rate declines markedly in aging hermaphrodites (but not males), run-on of PA becomes a pathogenic mechanism that promotes gonad degeneration. This illustrates how hyperfunction, or non-adaptive run-on in later life of a process that promotes fitness in early life, can promote atrophic senescent pathology in C. elegans.


Assuntos
Envelhecimento , Apoptose , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/fisiologia , Células Germinativas/metabolismo , Gônadas/fisiologia , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Proliferação de Células , Senescência Celular , Masculino , Mutação , Oócitos/citologia , Interferência de RNA , Receptor de Insulina/metabolismo , Transdução de Sinais
6.
Aging (Albany NY) ; 6(2): 98-117, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24531613

RESUMO

In C. elegans, increased lifespan in daf-2 insulin/IGF-1 receptor mutants is accompanied by up-regulation of the MDL-1 Mad basic helix-loop-helix leucine zipper transcription factor. Here we describe the role of mdl-1 in C. elegans germline proliferation and aging. The deletion allele mdl-1(tm311) shortened lifespan, and did so significantly more so in long-lived daf-2 mutants implying that mdl-1(+) contributes to effects of daf-2 on lifespan. mdl-1 mutant hermaphrodites also lay increased numbers of unfertilized oocytes. During aging, unfertilized oocytes in the uterus develop into tumors, whose development was accelerated by mdl-1(tm311). Opposite phenotypes were seen in daf-2 mutants, i.e. mdl-1 and daf-2 mutant germlines are hyperplastic and hypoplastic, respectively. Thus, MDL-1, like its mammalian orthologs, is an inhibitor of cell proliferation and growth that slows progression of an age-related pathology in C. elegans (uterine tumors). In addition, intestine-limited rescue of mdl-1 increased lifespan but not to wild type levels. Thus, mdl-1 likely acts both in the intestine and the germline to influence age-related mortality.


Assuntos
Envelhecimento/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Feminino , Fatores de Transcrição Forkhead , Genes myc , Hiperplasia , Hipertrofia , Mucosa Intestinal/metabolismo , Oócitos/crescimento & desenvolvimento , Neoplasias Uterinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA