Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 141(14): 5961-5971, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30888804

RESUMO

Structurally well-defined TIPS-acetylene substituted tetracene (TIPS-BT1') and pentacene (TIPS-BP1') dimers utilizing a [2.2.1] bicyclic norbornyl bridge have been studied-primarily using time-resolved spectroscopic methods-to uncover mechanistic details about primary steps in singlet fission leading to formation of the biexcitonic 1TT state as well as decay pathways to the ground state. For TIPS-BP1' in room-temperature toluene, 1TT formation is rapid and complete, occurring in 4.4 ps. Decay to the ground state in 100 ns is the primary loss pathway for 1TT in this system. For TIPS-BT1', the 1TT is also observed to form rapidly (with a time constant of 5 ps), but in this case it occurs in concert with establishment of an excited-state equilibrium ( K ∼ 1) with the singlet exciton state S1 at an energy of 2.3 eV above the ground state. The equilibrated states survive for 36 ns and are lost to ground state through both radiative and nonradiative pathways via the S1 and nonradiative pathways via the 1TT. The rapidity of 1TT formation in TIPS-BT1' is at first glance surprising. However, our analysis suggests that the few-parameter rate constant expression of Marcus theory explains both individual and comparative findings in the set of systems, thus establishing benchmarks for diabatic coupling and reorganization energy needed for efficient 1TT formation. Finally, a comparison of TIPS-BT1' with previous results obtained for a close constitutional isomer (TIPS-BT1) differing in the placement of TIPS-acetylene side groups suggests that the magnitude of exchange interaction in the correlated triplet manifold plays a critical role dictating 1TT yield in the tetracenic systems.

2.
Acc Chem Res ; 48(3): 818-27, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25647081

RESUMO

The use of sunlight to make chemical fuels (i.e., solar fuels) is an attractive approach in the quest to develop sustainable energy sources. Using nature as a guide, assemblies for artificial photosynthesis will need to perform multiple functions. They will need to be able to harvest light across a broad region of the solar spectrum, transport excited-state energy to charge-separation sites, and then transport and store redox equivalents for use in the catalytic reactions that produce chemical fuels. This multifunctional behavior will require the assimilation of multiple components into a single macromolecular system. A wide variety of different architectures including porphyrin arrays, peptides, dendrimers, and polymers have been explored, with each design posing unique challenges. Polymer assemblies are attractive due to their relative ease of production and facile synthetic modification. However, their disordered nature gives rise to stochastic dynamics not present in more ordered assemblies. The rational design of assemblies requires a detailed understanding of the energy and electron transfer events that follow light absorption, which can occur on time scales ranging from femtoseconds to hundreds of microseconds, necessitating the use of sophisticated techniques. We have used a combination of time-resolved absorption and emission spectroscopies with observation times that span 9 orders of magnitude to follow the excited-state evolution within polymer-based molecular assemblies. We complement experimental observations with molecular dynamics simulations to develop a microscopic view of these dynamics. This Account provides an overview of our work on polymers decorated with pendant Ru(II) chromophores, both in solution and on surfaces. We have examined site-to-site energy transport among the Ru(II) complexes, and in systems incorporating π-conjugated polymers, we have observed ultrafast formation of a long-lived charge-separated state. When attached to TiO2, these assemblies exhibit multifunctional behavior in which photon absorption is followed by energy transport to the surface and electron injection to produce an oxidized metal complex. The oxidizing equivalent is then transferred to the conjugated polymer, giving rise to a long-lived charge-separated state.

3.
Chem Sci ; 15(4): 1283-1296, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38274080

RESUMO

Important applications of photon upconversion through triplet-triplet annihilation require conversion of near-IR photons to visible light. Generally, however, efficiencies in this spectral region lag behind bluer analogues. Herein we consider potential benefits from a conformationally well-defined covalent dimer annihilator TIPS-BTX in studies that systematically compare function to a related monomer model TIPS-tetracene (TIPS-Tc). TIPS-BTX exhibits weak electronic coupling between chromophores juxtaposed about a polycyclic bridge. We report an upconversion yield ϕUC for TIPS-BTX that is more than 20× larger than TIPS-Tc under comparable conditions (0.16%). While the dimer ϕUC is low compared to bluer champion systems, this yield is amongst the largest so-far reported for a tetracenic dimer system and is achieved under unoptimized conditions suggesting a significantly higher ceiling. Further investigation shows the ϕUC enhancement for the dimer is due exclusively to the TTA process with an effective yield more that 30× larger for TIPS-BTX compared to TIPS-Tc. The ϕTTA enhancement for TIPS-BTX relative to TIPS-Tc is indicative of participation by intramolecular multiexciton states with evidence presented in spin statistical arguments that the 5TT is involved in productive channels. For TIPS-BTX we report a spin-statistical factor f = 0.42 that matches or exceeds values found in champion annihilator systems such as DPA. At the same time, the poor relative efficiency of TIPS-Tc suggests involvement of non-productive bimolecular channels and excimeric states are suspected. Broadly these studies indicate that funneling of photogenerated electronic states into productive pathways, and avoiding parasitic ones, remains central to the development of champion upconversion systems.

4.
Org Lett ; 20(2): 457-460, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29303594

RESUMO

An improved, modular synthesis of rigid, geometrically well-defined, alkyne-substituted tetracene (1) and pentacene (2) dimers is reported. The synthesis is rooted in sequential Diels-Alder reactions of a norbornyl tetraene with triisopropylsilylacetylene-substituted (TIPS-acetylene) quinone dienophiles. The incorporation of solubilizing and stabilizing TIPS-acetylene groups early in the synthesis affords a mild and reliable route, providing access, for the first time, to norbornyl-bridged pentacene dimers. A preliminary exploration of the excited state behavior of these molecules is also described.

5.
J Phys Chem B ; 120(32): 7937-48, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27433946

RESUMO

Ultrafast energy and electron transfer (EnT and ET, respectively) are characterized in a light-harvesting assembly based on a π-conjugated polymer (poly(fluorene)) functionalized with broadly absorbing pendant organic isoindigo (iI) chromophores using a combination of femtosecond transient absorption spectroscopy and large-scale computer simulation. Photoexcitation of the π-conjugated polymer leads to near-unity quenching of the excitation through a combination of EnT and ET to the iI pendants. The excited pendants formed by EnT rapidly relax within 30 ps, whereas recombination of the charge-separated state formed following ET occurs within 1200 ps. A computer model of the excited-state processes is developed by combining all-atom molecular dynamics simulations, which provides a molecular-level view of the assembly structure, with a kinetic model that accounts for the multiple excited-state quenching pathways. Direct comparison of the simulations with experimental data reveals that the underlying structure has a dramatic effect on the partitioning between EnT and ET in the polymer assembly, where the distance and orientation of the pendants in relation to the backbone serve to direct the dominant quenching pathway.

6.
J Phys Chem B ; 118(1): 372-8, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24299570

RESUMO

Energy transfer along a nonconjugated polymer chain is studied with a polystyrene-based copolymer of oligo(phenylene-ethynylene) (OPE) donor and thiophene-benzothiadiazole (TBT) acceptor pendants. The graft copolymers are prepared from reversible addition-fragmentation transfer polymerization (RAFT) and copper(I)-catalyzed azide-alkyne "click" reaction. The singlet energy transfer from donor to accept is studied via fluorescence emission and ultrafast transient absorption spectroscopy. Near unity quenching of the OPE excited state by the TBT moiety occurs on multiple time scales (2-50 ps) dependent on where the initial exciton is formed on the polymer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA