Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36201419

RESUMO

The discovery of causal relationships is a fundamental problem in science and medicine. In recent years, many elegant approaches to discovering causal relationships between two variables from observational data have been proposed. However, most of these deal only with purely directed causal relationships and cannot detect latent common causes. Here, we devise a general heuristic which takes a causal discovery algorithm that can only distinguish purely directed causal relations and modifies it to also detect latent common causes. We apply our method to two directed causal discovery algorithms, the information geometric causal inference (IGCI) of (Daniusis et al., 2010) and the kernel conditional deviance for causal inference of (Mitrovic et al., 2018), and extensively test on synthetic data-detecting latent common causes in additive, multiplicative and complex noise regimes-and on real data, where we are able to detect known common causes. In addition to detecting latent common causes, our experiments demonstrate that both the modified algorithms preserve the performance of the original in distinguishing directed causal relations.

2.
Nat Commun ; 13(1): 6039, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266298

RESUMO

The development and deployment of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end. Lack of diligence can lead to technical debt, scope creep and misaligned objectives, model misuse and failures, and expensive consequences. Engineering systems, on the other hand, follow well-defined processes and testing standards to streamline development for high-quality, reliable results. The extreme is spacecraft systems, with mission critical measures and robustness throughout the process. Drawing on experience in both spacecraft engineering and machine learning (research through product across domain areas), we've developed a proven systems engineering approach for machine learning and artificial intelligence: the Machine Learning Technology Readiness Levels framework defines a principled process to ensure robust, reliable, and responsible systems while being streamlined for machine learning workflows, including key distinctions from traditional software engineering, and a lingua franca for people across teams and organizations to work collaboratively on machine learning and artificial intelligence technologies. Here we describe the framework and elucidate with use-cases from physics research to computer vision apps to medical diagnostics.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Humanos , Tecnologia , Software , Engenharia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA