Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 291(12): 6471-82, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26792862

RESUMO

Legionella pneumophila, the causative agent of Legionnaires disease, has a biphasic life cycle with a switch from a replicative to a transmissive phenotype. During the replicative phase, the bacteria grow within host cells in Legionella-containing vacuoles. During the transmissive phenotype and the postexponential (PE) growth phase, the pathogens express virulence factors, become flagellated, and leave the Legionella-containing vacuoles. Using (13)C labeling experiments, we now show that, under in vitro conditions, serine is mainly metabolized during the replicative phase for the biosynthesis of some amino acids and for energy generation. During the PE phase, these carbon fluxes are reduced, and glucose also serves as an additional carbon substrate to feed the biosynthesis of poly-3-hydroxybuyrate (PHB), an essential carbon source for transmissive L. pneumophila. Whole-cell FTIR analysis and comparative isotopologue profiling further reveal that a putative 3-ketothiolase (Lpp1788) and a PHB polymerase (Lpp0650), but not enzymes of the crotonyl-CoA pathway (Lpp0931-0933) are involved in PHB metabolism during the PE phase. However, the data also reflect that additional bypassing reactions for PHB synthesis exist in agreement with in vivo competition assays using Acanthamoeba castellannii or human macrophage-like U937 cells as host cells. The data suggest that substrate usage and PHB metabolism are coordinated during the life cycle of the pathogen.


Assuntos
Hidroxibutiratos/metabolismo , Legionella pneumophila/metabolismo , Poliésteres/metabolismo , Vias Biossintéticas , Linhagem Celular Tumoral , Glucose/metabolismo , Humanos , Legionella pneumophila/genética , Legionella pneumophila/crescimento & desenvolvimento , Proibitinas , Serina/metabolismo
2.
J Biol Chem ; 289(30): 21040-54, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-24904060

RESUMO

Legionella pneumophila survives and replicates within a Legionella-containing vacuole (LCV) of amoebae and macrophages. Less is known about the carbon metabolism of the bacteria within the LCV. We have now analyzed the transfer and usage of amino acids from the natural host organism Acanthamoeba castellanii to Legionella pneumophila under in vivo (LCV) conditions. For this purpose, A. castellanii was 13C-labeled by incubation in buffer containing [U-(13)C(6)]glucose. Subsequently, these 13C-prelabeled amoebae were infected with L. pneumophila wild type or some mutants defective in putative key enzymes or regulators of carbon metabolism. 13C-Isotopologue compositions of amino acids from bacterial and amoebal proteins were then determined by mass spectrometry. In a comparative approach, the profiles documented the efficient uptake of Acanthamoeba amino acids into the LCV and further into L. pneumophila where they served as precursors for bacterial protein biosynthesis. More specifically, A. castellanii synthesized from exogenous [U-13C6]glucose unique isotopologue mixtures of several amino acids including Phe and Tyr, which were also observed in the same amino acids from LCV-grown L. pneumophila. Minor but significant differences were only detected in the isotopologue profiles of Ala, Asp, and Glu from the amoebal or bacterial protein fractions, respectively, indicating partial de novo synthesis of these amino acids by L. pneumophila. The similar isotopologue patterns in amino acids from L. pneumophila wild type and the mutants under study reflected the robustness of amino acid usage in the LCV of A. castellannii.


Assuntos
Acanthamoeba castellanii/metabolismo , Acanthamoeba castellanii/microbiologia , Aminoácidos/metabolismo , Legionella pneumophila/metabolismo , Transporte Biológico Ativo/fisiologia , Glucose/metabolismo , Marcação por Isótopo/métodos
3.
Int J Med Microbiol ; 303(8): 514-28, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23932911

RESUMO

Legionella oakridgensis is able to cause Legionnaires' disease, but is less virulent compared to L. pneumophila strains and very rarely associated with human disease. L. oakridgensis is the only species of the family legionellae which is able to grow on media without additional cysteine. In contrast to earlier publications, we found that L. oakridgensis is able to multiply in amoebae. We sequenced the genome of L. oakridgensis type strain OR-10 (ATCC 33761). The genome is smaller than the other yet sequenced Legionella genomes and has a higher G+C-content of 40.9%. L. oakridgensis lacks a flagellum and it also lacks all genes of the flagellar regulon except of the alternative sigma-28 factor FliA and the anti-sigma-28 factor FlgM. Genes encoding structural components of type I, type II, type IV Lvh and type IV Dot/Icm, Sec- and Tat-secretion systems could be identified. Only a limited set of Dot/Icm effector proteins have been recognized within the genome sequence of L. oakridgensis. Like in L. pneumophila strains, various proteins with eukaryotic motifs and eukaryote-like proteins were detected. We could demonstrate that the Dot/Icm system is essential for intracellular replication of L. oakridgensis. Furthermore, we identified new putative virulence factors of Legionella.


Assuntos
Amoeba/microbiologia , DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Legionella/crescimento & desenvolvimento , Legionella/genética , Análise de Sequência de DNA , Composição de Bases , Genes Bacterianos , Humanos , Legionella/isolamento & purificação , Doença dos Legionários/microbiologia , Dados de Sequência Molecular
4.
J Biol Chem ; 285(29): 22232-43, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20442401

RESUMO

Legionella pneumophila (Lp) is commonly found in freshwater habitats but is also the causative agent of Legionnaires' disease when infecting humans. Although various virulence factors have been reported, little is known about the nutrition and the metabolism of the bacterium. Here, we report the application of isotopologue profiling for analyzing the metabolism of L. pneumophila. Cultures of Lp were supplied with [U-(13)C(3)]serine, [U-(13)C(6)]glucose, or [1,2-(13)C(2)]glucose. After growth, (13)C enrichments and isotopologue patterns of protein-derived amino acids and poly-3-hydroxybutyrate were determined by mass spectrometry and/or NMR spectroscopy. The labeling patterns detected in the experiment with [U-(13)C(3)]serine showed major carbon flux from serine to pyruvate and from pyruvate to acetyl-CoA, which serves as a precursor of poly-3-hydroxybutyrate or as a substrate of a complete citrate cycle with Si specificity of the citrate synthase. Minor carbon flux was observed between pyruvate and oxaloacetate/malate by carboxylation and decarboxylation, respectively. The apparent lack of label in Val, Ile, Leu, Pro, Phe, Met, Arg, and Tyr confirmed that L. pneumophila is auxotrophic for these amino acids. Experiments with [(13)C]glucose showed that the carbohydrate is also used as a substrate to feed the central metabolism. The specific labeling patterns due to [1,2-(13)C(2)]glucose identified the Entner-Doudoroff pathway as the predominant route for glucose utilization. In line with these observations, a mutant lacking glucose-6-phosphate dehydrogenase (Delta zwf) did not incorporate label from glucose at significant levels and was slowly outcompeted by the wild type strain in successive rounds of infection in Acanthamoeba castellanii, indicating the importance of this enzyme and of carbohydrate usage in general for the life cycle of Lp.


Assuntos
Carbono/metabolismo , Glucose/metabolismo , Legionella pneumophila/metabolismo , Metabolômica/métodos , Serina/metabolismo , Acanthamoeba castellanii/microbiologia , Proteínas de Bactérias/metabolismo , Metabolismo dos Carboidratos , Isótopos de Carbono , Meios de Cultura , Cromatografia Gasosa-Espectrometria de Massas , Hidroxibutiratos/química , Hidroxibutiratos/metabolismo , Legionella pneumophila/genética , Legionella pneumophila/crescimento & desenvolvimento , Espectroscopia de Ressonância Magnética , Redes e Vias Metabólicas , Cloreto de Metileno , Modelos Biológicos , Mutação/genética , Poliésteres/química , Poliésteres/metabolismo
5.
PLoS One ; 7(12): e52378, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23285016

RESUMO

The metabolic response of host cells, in particular of primary mammalian cells, to bacterial infections is poorly understood. Here, we compare the carbon metabolism of primary mouse macrophages and of established J774A.1 cells upon Listeria monocytogenes infection using (13)C-labelled glucose or glutamine as carbon tracers. The (13)C-profiles of protein-derived amino acids from labelled host cells and intracellular L. monocytogenes identified active metabolic pathways in the different cell types. In the primary cells, infection with live L. monocytogenes increased glycolytic activity and enhanced flux of pyruvate into the TCA cycle via pyruvate dehydrogenase and pyruvate carboxylase, while in J774A.1 cells the already high glycolytic and glutaminolytic activities hardly changed upon infection. The carbon metabolism of intracellular L. monocytogenes was similar in both host cells. Taken together, the data suggest that efficient listerial replication in the cytosol of the host cells mainly depends on the glycolytic activity of the hosts.


Assuntos
Espaço Intracelular/microbiologia , Listeria monocytogenes/fisiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Aminoácidos/metabolismo , Animais , Carbono/metabolismo , Isótopos de Carbono , Linhagem Celular Transformada , Glucose/farmacologia , Humanos , Espaço Intracelular/efeitos dos fármacos , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/crescimento & desenvolvimento , Listeriose/microbiologia , Listeriose/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Metaboloma/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA