Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(3)2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30678190

RESUMO

High-density lipoproteins (HDL) are known to have vasoprotective functions in peripheral arteries and many of these functions extend to brain-derived endothelial cells. Importantly, several novel brain-relevant HDL functions have been discovered using brain endothelial cells and in 3D bioengineered human arteries. The cerebrovascular benefits of HDL in healthy humans may partly explain epidemiological evidence suggesting a protective association of circulating HDL levels against Alzheimer's Disease (AD) risk. As several methods exist to prepare HDL from plasma, here we compared cerebrovascular functions relevant to AD using HDL isolated by density gradient ultracentrifugation relative to apoB-depleted plasma prepared by polyethylene-glycol precipitation, a common high-throughput method to evaluate HDL cholesterol efflux capacity in clinical biospecimens. We found that apoB-depleted plasma was functionally equivalent to HDL isolated by ultracentrifugation in terms of its ability to reduce vascular Aß accumulation, suppress TNFα-induced vascular inflammation and delay Aß fibrillization. However, only HDL isolated by ultracentrifugation was able to suppress Aß-induced vascular inflammation, improve Aß clearance, and induce endothelial nitric oxide production.


Assuntos
Doença de Alzheimer/sangue , Doença de Alzheimer/metabolismo , Apolipoproteínas B/deficiência , Lipoproteínas HDL/sangue , Lipoproteínas HDL/metabolismo , Plasma/metabolismo , Adulto , Peptídeos beta-Amiloides/metabolismo , Bioengenharia , Barreira Hematoencefálica/metabolismo , Células Cultivadas , Angiopatia Amiloide Cerebral/sangue , Angiopatia Amiloide Cerebral/metabolismo , Células Endoteliais/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Inflamação/sangue , Inflamação/metabolismo , Masculino , Monócitos/citologia , Monócitos/metabolismo , Óxido Nítrico/metabolismo , Adulto Jovem
2.
J Neurophysiol ; 107(1): 103-13, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21994264

RESUMO

In this study, we examined the contribution of a low-threshold calcium current [I(Ca(T))] to locomotor-related activity in the neonatal mouse. Specifically, the role of I(Ca(T)) was studied during chemically induced, locomotor-like activity in the isolated whole cord and in a genetically distinct population of ventromedial spinal interneurons marked by the homeobox gene Hb9. In isolated whole spinal cords, cycle frequency was decreased in the presence of low-threshold calcium channel blockers, which suggests a role for I(Ca(T)) in the network that produces rhythmic, locomotor-like activity. Additionally, we used Hb9 interneurons as a model to study the cellular responses to application of low-threshold calcium channel blockers. In transverse slice preparations from transgenic Hb9::enhanced green fluorescent protein neonatal mice, N-methyl-d-aspartate-induced membrane potential oscillations in identified Hb9 interneurons also slowed in frequency with application of nickel when fast, spike-mediated, synaptic transmission was blocked with TTX. Voltage-clamp and immunolabeling experiments confirmed expression of I(Ca(T)) and channels, respectively, in Hb9 interneurons located in the ventromedial spinal cord. Taken together, these results provide support that T-type calcium currents play an important role in network-wide rhythm generation during chemically evoked, fictive locomotor activity.


Assuntos
Potenciais de Ação/fisiologia , Relógios Biológicos/fisiologia , Canais de Cálcio Tipo T/fisiologia , Cálcio/metabolismo , Interneurônios/fisiologia , Locomoção/fisiologia , Medula Espinal/fisiologia , Animais , Animais Recém-Nascidos , Sinalização do Cálcio/fisiologia , Linhagem Celular , Limiar Diferencial/fisiologia , Camundongos , Camundongos Transgênicos , Rede Nervosa/fisiologia
3.
Mol Neurodegener ; 15(1): 23, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32213187

RESUMO

BACKGROUND: Several lines of evidence suggest that high-density lipoprotein (HDL) reduces Alzheimer's disease (AD) risk by decreasing vascular beta-amyloid (Aß) deposition and inflammation, however, the mechanisms by which HDL improve cerebrovascular functions relevant to AD remain poorly understood. METHODS: Here we use a human bioengineered model of cerebral amyloid angiopathy (CAA) to define several mechanisms by which HDL reduces Aß deposition within the vasculature and attenuates endothelial inflammation as measured by monocyte binding. RESULTS: We demonstrate that HDL reduces vascular Aß accumulation independently of its principal binding protein, scavenger receptor (SR)-BI, in contrast to the SR-BI-dependent mechanism by which HDL prevents Aß-induced vascular inflammation. We describe multiple novel mechanisms by which HDL acts to reduce CAA, namely: i) altering Aß binding to collagen-I, ii) forming a complex with Aß that maintains its solubility, iii) lowering collagen-I protein levels produced by smooth-muscle cells (SMC), and iv) attenuating Aß uptake into SMC that associates with reduced low density lipoprotein related protein 1 (LRP1) levels. Furthermore, we show that HDL particles enriched in apolipoprotein (apo)E appear to be the major drivers of these effects, providing new insights into the peripheral role of apoE in AD, in particular, the fraction of HDL that contains apoE. CONCLUSION: The findings in this study identify new mechanisms by which circulating HDL, particularly HDL particles enriched in apoE, may provide vascular resilience to Aß and shed new light on a potential role of peripherally-acting apoE in AD.


Assuntos
Apolipoproteínas E/metabolismo , Angiopatia Amiloide Cerebral/metabolismo , HDL-Colesterol/metabolismo , Células Cultivadas , Humanos , Técnicas de Cultura de Órgãos , Engenharia Tecidual
4.
Mol Neurodegener ; 15(1): 70, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33213497

RESUMO

INTRODUCTION: The neurovascular unit (NVU) - the interaction between the neurons and the cerebrovasculature - is increasingly important to interrogate through human-based experimental models. Although advanced models of cerebral capillaries have been developed in the last decade, there is currently no in vitro 3-dimensional (3D) perfusible model of the human cortical arterial NVU. METHOD: We used a tissue-engineering technique to develop a scaffold-directed, perfusible, 3D human NVU that is cultured in native-like flow conditions that mimics the anatomy and physiology of cortical penetrating arteries. RESULTS: This system, composed of primary human vascular cells (endothelial cells, smooth muscle cells and astrocytes) and induced pluripotent stem cell (iPSC) derived neurons, demonstrates a physiological multilayer organization of the involved cell types. It reproduces key characteristics of cortical neurons and astrocytes and enables formation of a selective and functional endothelial barrier. We provide proof-of-principle data showing that this in vitro human arterial NVU may be suitable to study neurovascular components of neurodegenerative diseases such as Alzheimer's disease (AD), as endogenously produced phosphorylated tau and beta-amyloid accumulate in the model over time. Finally, neuronal and glial fluid biomarkers relevant to neurodegenerative diseases are measurable in our arterial NVU model. CONCLUSION: This model is a suitable research tool to investigate arterial NVU functions in healthy and disease states. Further, the design of the platform allows culture under native-like flow conditions for extended periods of time and yields sufficient tissue and media for downstream immunohistochemistry and biochemistry analyses.


Assuntos
Artérias/metabolismo , Astrócitos/metabolismo , Células Endoteliais/metabolismo , Doenças Neurodegenerativas/metabolismo , Doença de Alzheimer/metabolismo , Artérias/fisiopatologia , Barreira Hematoencefálica/metabolismo , Técnicas de Cocultura , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo
5.
Elife ; 62017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28994390

RESUMO

Amyloid plaques, consisting of deposited beta-amyloid (Aß), are a neuropathological hallmark of Alzheimer's Disease (AD). Cerebral vessels play a major role in AD, as Aß is cleared from the brain by pathways involving the cerebrovasculature, most AD patients have cerebrovascular amyloid (cerebral amyloid angiopathy (CAA), and cardiovascular risk factors increase dementia risk. Here we present a notable advance in vascular tissue engineering by generating the first functional 3-dimensioinal model of CAA in bioengineered human vessels. We show that lipoproteins including brain (apoE) and circulating (high-density lipoprotein, HDL) synergize to facilitate Aß transport across bioengineered human cerebral vessels. These lipoproteins facilitate Aß42 transport more efficiently than Aß40, consistent with Aß40 being the primary species that accumulates in CAA. Moreover, apoE4 is less effective than apoE2 in promoting Aß transport, also consistent with the well-established role of apoE4 in Aß deposition in AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas E/metabolismo , Vasos Sanguíneos/metabolismo , Angiopatia Amiloide Cerebral/fisiopatologia , Lipoproteínas HDL/metabolismo , Bioengenharia , Humanos , Modelos Biológicos , Técnicas de Cultura de Órgãos , Transporte Proteico
6.
Mol Neurodegener ; 12(1): 60, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28830501

RESUMO

BACKGROUND: Alzheimer's Disease (AD), characterized by accumulation of beta-amyloid (Aß) plaques in the brain, can be caused by age-related failures to clear Aß from the brain through pathways that involve the cerebrovasculature. Vascular risk factors are known to increase AD risk, but less is known about potential protective factors. We hypothesize that high-density lipoproteins (HDL) may protect against AD, as HDL have vasoprotective properties that are well described for peripheral vessels. Epidemiological studies suggest that HDL is associated with reduced AD risk, and animal model studies support a beneficial role for HDL in selectively reducing cerebrovascular amyloid deposition and neuroinflammation. However, the mechanism by which HDL may protect the cerebrovascular endothelium in the context of AD is not understood. METHODS: We used peripheral blood mononuclear cell adhesion assays in both a highly novel three dimensional (3D) biomimetic model of the human vasculature composed of primary human endothelial cells (EC) and smooth muscle cells cultured under flow conditions, as well as in monolayer cultures of ECs, to study how HDL protects ECs from the detrimental effects of Aß. RESULTS: Following Aß addition to the abluminal (brain) side of the vessel, we demonstrate that HDL circulated within the lumen attenuates monocyte adhesion to ECs in this biofidelic vascular model. The mechanism by which HDL suppresses Aß-mediated monocyte adhesion to ECs was investigated using monotypic EC cultures. We show that HDL reduces Aß-induced PBMC adhesion to ECs independent of nitric oxide (NO) production, miR-233 and changes in adhesion molecule expression. Rather, HDL acts through scavenger receptor (SR)-BI to block Aß uptake into ECs and, in cell-free assays, can maintain Aß in a soluble state. We confirm the role of SR-BI in our bioengineered human vessel. CONCLUSION: Our results define a novel activity of HDL that suppresses Aß-mediated monocyte adhesion to the cerebrovascular endothelium.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Leucócitos Mononucleares/metabolismo , Lipoproteínas HDL/metabolismo , Doença de Alzheimer/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Humanos , Monócitos/metabolismo , Placa Amiloide/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA