Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Org Chem ; 88(3): 1327-1330, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36653131

RESUMO

Herein, we report a photoredox-catalyzed decarboxylative addition of N-substituted acetic acids to aldehydes to generate secondary alcohols under mild reaction conditions. Protic solvents were found to be critical to the successful implementation of this methodology. This strategy enables the formation of a novel C-C bond between aldehydes and N-substituted acetic acid derivatives of weakly nucleophilic and medicinally relevant heteroaryls such as indoles, pyrroles, indazoles, and azaindoles.

2.
Bioorg Med Chem Lett ; 91: 129352, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37270074

RESUMO

Spleen tyrosine kinase (SYK) is a non-receptor cytoplasmic kinase. Due to its pivotal role in B cell receptor and Fc-receptor signalling, inhibition of SYK has been a target of interest in a variety of diseases. Herein, we report the use of structure-based drug design to discover a series of potent macrocyclic inhibitors of SYK, with excellent kinome selectivity and in vitro metabolic stability. We were able to remove hERG inhibition through the optimization of physical properties, and utilized a pro-drug strategy to address permeability challenges.


Assuntos
Proteínas Tirosina Quinases , Transdução de Sinais , Quinase Syk , Inibidores de Proteínas Quinases/farmacologia
3.
Bioorg Med Chem Lett ; 30(22): 127523, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32877741

RESUMO

Hybridisation of amino-pyrimidine based SYK inhibitors (e.g. 1a) with previously reported diamine-based SYK inhibitors (e.g. TAK-659) led to the identification and optimisation of a novel pyrimidine-based series of potent and selective SYK inhibitors, where the original aminomethylene group was replaced by a 3,4-diaminotetrahydropyran group. The initial compound 5 achieved excellent SYK potency. However, it suffered from poor permeability and modest kinase selectivity. Further modifications of the 3,4-diaminotetrahydropyran group were identified and the interactions of those groups with Asp512 were characterised by protein X-ray crystallography. Further optimisation of this series saw mixed results where permeability and kinase selectivity were increased and oral bioavailability was achieved in the series, but at the expense of potent hERG inhibition.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Quinase Syk/antagonistas & inibidores , Animais , Cães , Relação Dose-Resposta a Droga , Humanos , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirazóis/síntese química , Pirazóis/química , Pirimidinas/síntese química , Pirimidinas/química , Ratos , Ratos Wistar , Relação Estrutura-Atividade , Quinase Syk/metabolismo
4.
Bioorg Med Chem Lett ; 30(19): 127433, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32717371

RESUMO

Spleen tyrosine kinase (SYK) is a non-receptor cytosolic kinase. Due to its pivotal role in B cell receptor and Fc-receptor signaling, inhibition of SYK has been targeted in a variety of disease areas. Herein, we report the optimization of a series of potent and selective SYK inhibitors, focusing on improving metabolic stability, pharmacokinetics and hERG inhibition. As a result, we identified 30, which exhibited no hERG activity but unfortunately was poorly absorbed in rats and mice. We also identified a SYK chemical probe, 17, which exhibits excellent potency at SYK, and an adequate rodent PK profile to support in vivo efficacy/PD studies.


Assuntos
Indazóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Quinase Syk/antagonistas & inibidores , Animais , Sítios de Ligação , Células CACO-2 , Cristalografia por Raios X , Canal de Potássio ERG1/antagonistas & inibidores , Humanos , Indazóis/síntese química , Indazóis/metabolismo , Indazóis/farmacocinética , Camundongos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Ratos Wistar , Relação Estrutura-Atividade , Quinase Syk/química , Quinase Syk/metabolismo
5.
Bioorg Med Chem Lett ; 28(8): 1336-1341, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29559278

RESUMO

The design and synthesis of a novel series of 2,6-disubstituted pyrazine derivatives as CK2 kinase inhibitors is described. Structure-guided optimization of a 5-substituted-3-thiophene carboxylic acid screening hit (3a) led to the development of a lead compound (12b), which shows inhibition in both enzymatic and cellular assays. Subsequent design and hybridization efforts also led to the unexpected identification of analogs with potent PIM kinase activity (14f).


Assuntos
Caseína Quinase II/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Pirazinas/farmacologia , Linhagem Celular Tumoral , Desenho de Fármacos , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Pirazinas/síntese química , Pirazinas/química , Pirazinas/farmacocinética , Relação Estrutura-Atividade
6.
Bioorg Med Chem Lett ; 25(22): 5172-7, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26463129

RESUMO

Two novel compounds, pyridopyrimidines (1) and naphthyridines (2) were identified as potent inhibitors of bacterial NAD(+)-dependent DNA ligase (Lig) A in a fragment screening. SAR was guided by molecular modeling and X-ray crystallography. It was observed that the diaminonitrile pharmacophore made a key interaction with the ligase enzyme, specifically residues Glu114, Lys291, and Leu117. Synthetic challenges limited opportunities for diversification of the naphthyridine core, therefore most of the SAR was focused on a pyridopyrimidine scaffold. The initial diversification at R(1) improved both enzyme and cell potency. Further SAR developed at the R(2) position using the Negishi cross-coupling reaction provided several compounds, among these compounds 22g showed good enzyme potency and cellular potency.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , DNA Ligases/antagonistas & inibidores , NAD/metabolismo , Naftiridinas/farmacologia , Pirimidinas/farmacologia , Antibacterianos/síntese química , Proteínas de Bactérias/química , DNA Ligases/química , Haemophilus influenzae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Naftiridinas/síntese química , Pirimidinas/síntese química , Staphylococcus aureus/efeitos dos fármacos , Streptococcus pneumoniae/efeitos dos fármacos , Relação Estrutura-Atividade
7.
Bioorg Med Chem Lett ; 24(4): 1138-43, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24462666

RESUMO

The discovery and optimization of a series of 6-aryl-azabenzimidazole inhibitors of TBK1 and IKK-ε is described. Various internal azabenzimidazole leads and reported TBK1/IKK-ε inhibitors were docked into a TBK1 homology model. The resulting overlays inspired a focused screen of 6-substituted azabenzimidazoles against TBK1/IKK-ε. This screen resulted in initial hit compound 3. The TBK1/IKK-ε enzyme and cell potency of this compound was further improved using structure guided drug design. Systematic exploration of the C6 aryl group led to compound 19, a potent inhibitor of TBK1 with selectivity against cell cycle kinases CDK2 and Aurora B. Further elaboration and optimization gave compound 25, a single digit nM inhibitor of TBK1. These compounds may serve as in vitro probes to evaluate TBK1/IKK-ε as an oncology target.


Assuntos
Benzimidazóis/farmacologia , Descoberta de Drogas , Quinase I-kappa B/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Benzimidazóis/síntese química , Benzimidazóis/química , Relação Dose-Resposta a Droga , Humanos , Quinase I-kappa B/metabolismo , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Relação Estrutura-Atividade
8.
Bioorg Med Chem Lett ; 22(5): 2063-9, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22305584

RESUMO

The design, synthesis and biological evaluation of a series of azabenzimidazole derivatives as TBK1/IKKε kinase inhibitors are described. Starting from a lead compound 1a, iterative design and SAR exploitation of the scaffold led to analogues with nM enzyme potencies against TBK1/IKKε. These compounds also exhibited excellent cellular activity against TBK1. Further structure-based design to improve selectivity over CDK2 and Aurora B resulted in compounds such as 5b-e. These probe compounds will facilitate study of the complex cancer biology of TBK1 and IKKε.


Assuntos
Benzimidazóis/química , Benzimidazóis/farmacologia , Quinase I-kappa B/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Aurora Quinase B , Aurora Quinases , Compostos Aza/química , Compostos Aza/farmacologia , Quinase 2 Dependente de Ciclina/metabolismo , Desenho de Fármacos , Células HEK293 , Humanos , Quinase I-kappa B/metabolismo , Modelos Moleculares , Neoplasias/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Relação Estrutura-Atividade
9.
J Med Chem ; 63(18): 10460-10473, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32803978

RESUMO

We report the first disclosure of IRAK3 degraders in the scientific literature. Taking advantage of an opportune byproduct obtained during our efforts to identify IRAK4 inhibitors, we identified ready-to-use, selective IRAK3 ligands in our compound collection with the required properties for conversion into proteolysis-targeting chimera (PROTAC) degraders. This work culminated with the discovery of PROTAC 23, which we demonstrated to be a potent and selective degrader of IRAK3 after 16 h in THP1 cells. 23 induced proteasome-dependent degradation of IRAK3 and required both CRBN and IRAK3 binding for activity. We conclude that PROTAC 23 constitutes an excellent in vitro tool with which to interrogate the biology of IRAK3.


Assuntos
Quinases Associadas a Receptores de Interleucina-1/metabolismo , Ftalimidas/farmacologia , Proteólise/efeitos dos fármacos , Pirróis/farmacologia , Triazinas/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Humanos , Ligantes , Ftalimidas/síntese química , Pirróis/síntese química , Células THP-1 , Triazinas/síntese química , Ubiquitina-Proteína Ligases/metabolismo
10.
Org Lett ; 22(9): 3418-3422, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32311269

RESUMO

In this report, we describe a new photoredox catalyzed 1,4-conjugate addition of N-substituted acetic acids to electron-deficient olefins via decarboxylative C-C bond formation. This C-C bond formation occurred under mild conditions enabled by visible light irradiation. This transformation facilitated the synthesis of biologically relevant N-substituted heterocyclic structural motifs not readily accessible by other methods. The C-C bond formation protocol was applied to weakly nucleophilic heterocycles such as indoles, indazoles, imidazoles, and cyclic amides to form functionalized drug-like small molecule.


Assuntos
Alcenos , Elétrons , Acetatos/química , Alcenos/química , Catálise , Descarboxilação , Metano/análogos & derivados
11.
Mutat Res ; 594(1-2): 120-34, 2006 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-16274707

RESUMO

Chronic inflammation is associated with a variety of human diseases, including cancer, with one possible mechanistic link involving over-production of nitric oxide (NO*) by activated macrophages. Subsequent reaction of NO* with superoxide in the presence of carbon dioxide yields nitrosoperoxycarbonate (ONOOCO2-), a strong oxidant that reacts with guanine in DNA to form a variety of oxidation and nitration products, such 2'-deoxy-8-oxoguanosine. Alternatively, the reaction of NO and O2 leads to the formation of N2O3, a nitrosating agent that causes nucleobase deamination to form 2'-deoxyxanthosine (dX) and 2'-deoxyoxanosine (dO) from dG; 2'-deoxyinosine (dI) from dA; and 2'-deoxyuridine (dU) from dC, in addition to abasic sites and dG-dG cross-links. The presence of both ONOOCO2- and N2O3 at sites of inflammation necessitates definition of the relative roles of oxidative and nitrosative DNA damage in the genetic toxicology of inflammation. To this end, we sought to develop enzymatic probes for oxidative and nitrosative DNA lesions as a means to quantify the two types of DNA damage in in vitro DNA damage assays, such as the comet assay and as a means to differentially map the lesions in genomic DNA by the technique of ligation-mediated PCR. On the basis of fragmentary reports in the literature, we first systematically assessed the recognition of dX and dI by a battery of DNA repair enzymes. Members of the alkylpurine DNA glycosylase family (E. coli AlkA, murine Aag, and human MPG) all showed repair activity with dX (k(cat)/Km 29 x 10(-6), 21 x 10(-6), and 7.8 x 10(-6) nM(-1) min(-1), respectively), though the activity was considerably lower than that of EndoV (8 x 10(-3) nM(-1) min(-1)). Based on these results and other published studies, we focused the development of enzymatic probes on two groups of enzymes, one with activity against oxidative damage (formamidopyrimidine-DNA glycosylase (Fpg); endonuclease III (EndoIII)) and the other with activity against nucleobase deamination products (uracil DNA glycosylase (Udg); AlkA). These combinations were assessed for recognition of DNA damage caused by N2O3 (generated with a NO*/O2 delivery system) or ONOOCO2- using a plasmid nicking assay and by LC-MS analysis. Collectively, the results indicate that a combination of AlkA and Udg react selectively with DNA containing only nitrosative damage, while Fpg and EndoIII react selectively with DNA containing oxidative base lesions caused by ONOOCO2-. The results suggest that these enzyme combinations can be used as probes to define the location and quantity of the oxidative and nitrosative DNA lesions produced by chemical mediators of inflammation in systems, such as the comet assay, ligation-mediated polymerase chain reaction, and other assays of DNA damage and repair.


Assuntos
Dano ao DNA/efeitos dos fármacos , Sondas de DNA , Técnicas de Sonda Molecular , Espécies Reativas de Nitrogênio/toxicidade , Animais , Reparo do DNA , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Humanos , Inosina Monofosfato/metabolismo , Camundongos , Óxidos de Nitrogênio/metabolismo , Nitrosação , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Plasmídeos/efeitos dos fármacos
12.
J Med Chem ; 59(23): 10781-10787, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27809515

RESUMO

Herein we report structure-cytotoxicity relationships for analogues of N14-desacetoxytubulyisn H 1. A novel synthetic approach toward 1 enabled the discovery of compounds with a range of activity. Calculated basicity of the N-terminus of tubulysins was shown to be a good predictor of cytotoxicity. The impact of structural modifications at the C-terminus of 1 upon cytotoxicity is also described. These findings will facilitate the development of new tubulysin analogues for the treatment of cancer.


Assuntos
Antineoplásicos/farmacologia , Oligopeptídeos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Oligopeptídeos/síntese química , Oligopeptídeos/química , Relação Estrutura-Atividade
13.
ACS Med Chem Lett ; 7(5): 514-9, 2016 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-27190603

RESUMO

A novel series of covalent inhibitors of EGFR (epidermal growth factor receptor) kinase was discovered through a combination of subset screening and structure-based design. These compounds preferentially inhibit mutant forms of EGFR (activating mutant and T790M mutant) over wild-type EGFR in cellular assays measuring EGFR autophosphorylation and proliferation, suggesting an improved therapeutic index in non-small cell lung cancer patients would be achievable relative to established EGFR inhibitors. We describe our design approaches, resulting in the identification of the lead compound 5, and our efforts to develop an understanding of the structure-activity relationships within this series. In addition, strategies to overcome challenges around metabolic stability and aqueous solubility are discussed. Despite limitations in its physical properties, 5 is orally bioavailable in mice and demonstrates pronounced antitumor activity in in vivo models of mutant EGFR-driven cancers.

14.
ACS Med Chem Lett ; 6(3): 254-9, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25815142

RESUMO

The canonical Wnt pathway plays an important role in embryonic development, adult tissue homeostasis, and cancer. Germline mutations of several Wnt pathway components, such as Axin, APC, and ß-catenin, can lead to oncogenesis. Inhibition of the poly(ADP-ribose) polymerase (PARP) catalytic domain of the tankyrases (TNKS1 and TNKS2) is known to inhibit the Wnt pathway via increased stabilization of Axin. In order to explore the consequences of tankyrase and Wnt pathway inhibition in preclinical models of cancer and its impact on normal tissue, we sought a small molecule inhibitor of TNKS1/2 with suitable physicochemical properties and pharmacokinetics for hypothesis testing in vivo. Starting from a 2-phenyl quinazolinone hit (compound 1), we discovered the pyrrolopyrimidinone compound 25 (AZ6102), which is a potent TNKS1/2 inhibitor that has 100-fold selectivity against other PARP family enzymes and shows 5 nM Wnt pathway inhibition in DLD-1 cells. Moreover, compound 25 can be formulated well in a clinically relevant intravenous solution at 20 mg/mL, has demonstrated good pharmacokinetics in preclinical species, and shows low Caco2 efflux to avoid possible tumor resistance mechanisms.

15.
Biochem Biophys Res Commun ; 323(3): 838-44, 2004 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-15381076

RESUMO

cis-1,4-Dioxo-2-butene is a toxic metabolite of furan, while the trans-isomer is a product of deoxyribose oxidation in DNA. It has recently been reported that both cis- and trans-1,4-dioxo-2-butene react with the 2'-deoxynucleosides dC, dG, and dA to form novel diastereomeric oxadiazabicyclo(3.3.0)octaimine adducts. We have now extended these studies with kinetic and spectroscopic analyses of the reactions of cis- and trans-1,4-dioxo-2-butene, as well as the identification of novel adducts of dA. The reaction of dC with trans-1,4-dioxo-2-butene was observed to be nearly quantitative and produced two interchanging diastereomers with a second-order rate constant of 3.66 x 10(-2)M(-1)s(-1), which is nearly 10-fold faster than the reaction with the cis-isomer (3.74 x 10(-3)M(-1)s(-1)). HPLC analyses of reactions of 1,4-dioxo-2-butene with both dA and 9-methyladenine (pH 7.4, 37 degrees C) revealed multiple products including a novel pair of closely eluting fluorescent species of identical mass ([M+H] m/z 420), each of which contains two molecules of 1,4-dioxo-2-butene, and a more abundant but unstable and non-fluorescent species ([M+H] m/z 414). Partial structural characterization of the fluorescent adducts of dA revealed the presence of the oxadiazabicyclo(3.3.0)octaimine ring system common to the dC adducts. These results support the genotoxic potential of furan metabolites and products of deoxyribose oxidation.


Assuntos
Aldeídos/química , Dano ao DNA , Desoxirribonucleosídeos/química , Desoxirribose/química , Furanos/química , Isomerismo , Conformação Molecular , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA