Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 449(7165): 1022-4, 2007 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-17960237

RESUMO

A fundamental question in nuclear physics is what combinations of neutrons and protons can make up a nucleus. Many hundreds of exotic neutron-rich isotopes have never been observed; the limit of how many neutrons a given number of protons can bind is unknown for all but the lightest elements, owing to the delicate interplay between single particle and collective quantum effects in the nucleus. This limit, known as the neutron drip line, provides a benchmark for models of the atomic nucleus. Here we report a significant advance in the determination of this limit: the discovery of two new neutron-rich isotopes--40Mg and 42Al--that are predicted to be drip-line nuclei. In the past, several attempts to observe 40Mg were unsuccessful; moreover, the observation of 42Al provides an experimental indication that the neutron drip line may be located further towards heavier isotopes in this mass region than is currently believed. In stable nuclei, attractive pairing forces enhance the stability of isotopes with even numbers of protons and neutrons. In contrast, the present work shows that nuclei at the drip line gain stability from an unpaired proton, which narrows the shell gaps and provides the opportunity to bind many more neutrons.

2.
Phys Rev Lett ; 106(2): 022502, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21405225

RESUMO

The transition rates for the 2(1)+ states in (62,64,66)Fe were studied using the recoil distance Doppler-shift technique applied to projectile Coulomb excitation reactions. The deduced E2 strengths illustrate the enhanced collectivity of the neutron-rich Fe isotopes up to N = 40. The results are interpreted using the generalized concept of valence proton symmetry which describes the evolution of nuclear structure around N = 40 as governed by the number of valence protons with respect to Z ≈ 30. The trend of collectivity suggested by the experimental data is described by state-of-the-art shell-model calculations with a new effective interaction developed for the fpgd valence space.

3.
Phys Rev Lett ; 102(14): 142501, 2009 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-19392430

RESUMO

The results of measurements of the production of neutron-rich nuclei by the fragmentation of a 76Ge beam are presented. The cross sections were measured for a large range of nuclei including 15 new isotopes that are the most neutron-rich nuclides of the elements chlorine to manganese (50Cl, 53Ar, ;{55,56}K, ;{57,58}Ca, ;{59,60,61}Sc, ;{62,63}Ti, ;{65,66}V, 68Cr, 70Mn). The enhanced cross sections of several new nuclei relative to a simple thermal evaporation framework, previously shown to describe similar production cross sections, indicates that nuclei in the region around 62Ti might be more stable than predicted by current mass models and could be an indication of a new island of inversion similar to that centered on 31Na.

4.
Nature ; 418(6900): 859-62, 2002 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-12192405

RESUMO

The periodic table provides a classification of the chemical properties of the elements. But for the heaviest elements, the transactinides, this role of the periodic table reaches its limits because increasingly strong relativistic effects on the valence electron shells can induce deviations from known trends in chemical properties. In the case of the first two transactinides, elements 104 and 105, relativistic effects do indeed influence their chemical properties, whereas elements 106 and 107 both behave as expected from their position within the periodic table. Here we report the chemical separation and characterization of only seven detected atoms of element 108 (hassium, Hs), which were generated as isotopes (269)Hs (refs 8, 9) and (270)Hs (ref. 10) in the fusion reaction between (26)Mg and (248)Cm. The hassium atoms are immediately oxidized to a highly volatile oxide, presumably HsO(4), for which we determine an enthalpy of adsorption on our detector surface that is comparable to the adsorption enthalpy determined under identical conditions for the osmium oxide OsO(4). These results provide evidence that the chemical properties of hassium and its lighter homologue osmium are similar, thus confirming that hassium exhibits properties as expected from its position in group 8 of the periodic table.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA