Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 45(5): e26654, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520361

RESUMO

Obesity represents a significant public health concern and is linked to various comorbidities and cognitive impairments. Previous research indicates that elevated body mass index (BMI) is associated with structural changes in white matter (WM). However, a deeper characterization of body composition is required, especially considering the links between abdominal obesity and metabolic dysfunction. This study aims to enhance our understanding of the relationship between obesity and WM connectivity by directly assessing the amount and distribution of fat tissue. Whole-body magnetic resonance imaging (MRI) was employed to evaluate total adipose tissue (TAT), visceral adipose tissue (VAT), and subcutaneous adipose tissue (SAT), while MR liver spectroscopy measured liver fat content in 63 normal-weight, overweight, and obese males. WM connectivity was quantified using microstructure-informed tractography. Connectome-based predictive modeling was used to predict body composition metrics based on WM connectomes. Our analysis revealed a positive dependency between BMI, TAT, SAT, and WM connectivity in brain regions involved in reward processing and appetite regulation, such as the insula, nucleus accumbens, and orbitofrontal cortex. Increased connectivity was also observed in cognitive control and inhibition networks, including the middle frontal gyrus and anterior cingulate cortex. No significant associations were found between WM connectivity and VAT or liver fat. Our findings suggest that altered neural communication between these brain regions may affect cognitive processes, emotional regulation, and reward perception in individuals with obesity, potentially contributing to weight gain. While our study did not identify a link between WM connectivity and VAT or liver fat, further investigation of the role of various fat depots and metabolic factors in brain networks is required to advance obesity prevention and treatment approaches.


Assuntos
Imageamento por Ressonância Magnética , Substância Branca , Masculino , Humanos , Substância Branca/patologia , Distribuição Tecidual , Imagem Corporal Total , Obesidade/diagnóstico por imagem , Obesidade/complicações , Tecido Adiposo/diagnóstico por imagem , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia
2.
Stroke ; 54(4): 955-963, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36846963

RESUMO

BACKGROUND: Most studies on stroke have been designed to examine one deficit in isolation; yet, survivors often have multiple deficits in different domains. While the mechanisms underlying multiple-domain deficits remain poorly understood, network-theoretical methods may open new avenues of understanding. METHODS: Fifty subacute stroke patients (7±3days poststroke) underwent diffusion-weighted magnetic resonance imaging and a battery of clinical tests of motor and cognitive functions. We defined indices of impairment in strength, dexterity, and attention. We also computed imaging-based probabilistic tractography and whole-brain connectomes. To efficiently integrate inputs from different sources, brain networks rely on a rich-club of a few hub nodes. Lesions harm efficiency, particularly when they target the rich-club. Overlaying individual lesion masks onto the tractograms enabled us to split the connectomes into their affected and unaffected parts and associate them to impairment. RESULTS: We computed efficiency of the unaffected connectome and found it was more strongly correlated to impairment in strength, dexterity, and attention than efficiency of the total connectome. The magnitude of the correlation between efficiency and impairment followed the order attention>dexterity ≈ strength (strength: |r|=.03, P=0.02, dexterity: |r|=.30, P=0.05, attention: |r|=.55, P<0.001). Network weights associated with the rich-club were more strongly correlated to efficiency than non-rich-club weights. CONCLUSIONS: Attentional impairment is more sensitive to disruption of coordinated networks between brain regions than motor impairment, which is sensitive to disruption of localized networks. Providing more accurate reflections of actually functioning parts of the network enables the incorporation of information about the impact of brain lesions on connectomics contributing to a better understanding of underlying stroke mechanisms.


Assuntos
Disfunção Cognitiva , Conectoma , Acidente Vascular Cerebral , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/patologia , Disfunção Cognitiva/patologia , Cognição , Conectoma/métodos , Imageamento por Ressonância Magnética
3.
Neuroimage ; 277: 120231, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37330025

RESUMO

Estimating structural connectivity from diffusion-weighted magnetic resonance imaging is a challenging task, partly due to the presence of false-positive connections and the misestimation of connection weights. Building on previous efforts, the MICCAI-CDMRI Diffusion-Simulated Connectivity (DiSCo) challenge was carried out to evaluate state-of-the-art connectivity methods using novel large-scale numerical phantoms. The diffusion signal for the phantoms was obtained from Monte Carlo simulations. The results of the challenge suggest that methods selected by the 14 teams participating in the challenge can provide high correlations between estimated and ground-truth connectivity weights, in complex numerical environments. Additionally, the methods used by the participating teams were able to accurately identify the binary connectivity of the numerical dataset. However, specific false positive and false negative connections were consistently estimated across all methods. Although the challenge dataset doesn't capture the complexity of a real brain, it provided unique data with known macrostructure and microstructure ground-truth properties to facilitate the development of connectivity estimation methods.


Assuntos
Imagem de Difusão por Ressonância Magnética , Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Método de Monte Carlo , Imagens de Fantasmas
4.
Magn Reson Med ; 90(4): 1625-1640, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37279007

RESUMO

PURPOSE: Biophysical models of diffusion MRI have been developed to characterize microstructure in various tissues, but existing models are not suitable for tissue composed of permeable spherical cells. In this study we introduce Cellular Exchange Imaging (CEXI), a model tailored for permeable spherical cells, and compares its performance to a related Ball & Sphere (BS) model that neglects permeability. METHODS: We generated DW-MRI signals using Monte-Carlo simulations with a PGSE sequence in numerical substrates made of spherical cells and their extracellular space for a range of membrane permeability. From these signals, the properties of the substrates were inferred using both BS and CEXI models. RESULTS: CEXI outperformed the impermeable model by providing more stable estimates cell size and intracellular volume fraction that were diffusion time-independent. Notably, CEXI accurately estimated the exchange time for low to moderate permeability levels previously reported in other studies ( κ < 25 µ m / s $$ \kappa <25\kern0.3em \mu \mathrm{m}/\mathrm{s} $$ ). However, in highly permeable substrates ( κ = 50 µ m / s $$ \kappa =50\kern0.3em \mu \mathrm{m}/\mathrm{s} $$ ), the estimated parameters were less stable, particularly the diffusion coefficients. CONCLUSION: This study highlights the importance of modeling the exchange time to accurately quantify microstructure properties in permeable cellular substrates. Future studies should evaluate CEXI in clinical applications such as lymph nodes, investigate exchange time as a potential biomarker of tumor severity, and develop more appropriate tissue models that account for anisotropic diffusion and highly permeable membranes.


Assuntos
Imagem de Difusão por Ressonância Magnética , Água , Água/química , Imagem de Difusão por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética , Água Corporal/metabolismo , Espaço Extracelular , Difusão
5.
AIDS Care ; 35(12): 2024-2035, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36929739

RESUMO

Most domestic servants (DS) in Mali are very young female migrants living in precarious conditions. We aimed to understand their living and working conditions in relation to their general and sexual health. Seven focus groups (53 participants) were conducted by the DS community-based organization ADDAD. Narratives were thematically analyzed using an inductive method. The dominant emerging theme was DS' strong dependence on their employers. Employers' attitudes regarding DS workload, the provision of food, water and hygiene products, housing conditions, and healthcare cover, appeared decisive for DS' physical and mental health, and the type of healthcare they used (self-medication, traditional care, healthcare facilities). Psychological, physical and sexual violence in employers' households was frequent. HIV/STI prevention knowledge was poor. These results highlight the serious risks for DS in terms of HIV/STI and unwanted pregnancies. DS were interested in receiving healthcare from ADDAD; this was motivated by the organization's trusting and understanding community-based environment, and DS' fear of discrimination in healthcare facilities. This study highlights the relevance of tackling the defense of rights and sexual health promotion for DS at the community level. Its findings can help identify research questions to evaluate the extent to which DS constitute a key HIV population.


Assuntos
Infecções por HIV , Saúde Sexual , Infecções Sexualmente Transmissíveis , Gravidez , Humanos , Feminino , Infecções por HIV/prevenção & controle , Infecções por HIV/epidemiologia , Infecções Sexualmente Transmissíveis/prevenção & controle , Mali , Pesquisa Qualitativa
6.
Qual Health Res ; 33(8-9): 727-740, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37271754

RESUMO

EPOSIM is a community-based participatory research study which used the Photovoice method with people who inject drugs (PWID) ahead of a possible opening of a drug consumption room (DCR) in Marseille, France. It aimed to identify the strategies used by PWID when injecting, and the risks they take when they have no safe private space to inject in the area they live in. A total of 7 PWID participated in the full study process. The 189 photographs they took provided us with a good understanding of their injection practices in public places. The main results highlighted the spatiality and materiality of injecting experience in a context where no DCR was available. They also showed the relevance of Photovoice to valorize the voices of PWID when implementing a DCR. Through the showcasing of their photographs at various public exhibitions, the participants seized the opportunity to use Photovoice to make their voices heard beyond the group formed for the study, in order to show the different forms of stigma and insalubrious contexts which they faced on a daily basis. Furthermore, the photographs taken demonstrated that having only health and safety records is not enough to fully understand PWID injection practices. Future studies must take into account PWID perceptions of their relationship with injecting in public spaces and with the management of stigma. The questions of pleasure and comfort must also be explored in evaluation studies of harm reduction measures, for example, DCR.


Assuntos
Infecções por HIV , Abuso de Substâncias por Via Intravenosa , Humanos , Programas de Troca de Agulhas , Áreas de Pobreza , Pesquisa Participativa Baseada na Comunidade , Redução do Dano
7.
Sante Publique ; 34(HS2): 11-19, 2023.
Artigo em Francês | MEDLINE | ID: mdl-37336725

RESUMO

Despite advances in recent decades, health inequalities faced by sexual, gender and gendered minorities remain poorly recognized. Yet the barriers to accessing prevention and care encountered by these populations are widely documented in international literature. The health of LGBTI+ people is still largely understood and structured as a sexual health issue related to sexually transmitted infections, leaving other crucial issues in the background. Some questions remain hidden, in particular the realities experienced by bisexual, lesbian, intersex people, as well as the diversity of transidentities. This issue is a first on several levels. It is indeed the first time that a scientific journal publishes a collection of this scope in the French-speaking world. Moreover, the issue brings together contributions that reflect the diversity of actors and actresses in this field. Finally, the issue's French-speaking focus allows for diversified geographical insights. This issue is structured around three main parts: 1) Thinking, categorizing: from research to health promotion; 2) Describing health realities: apprehending needs and understanding obstacles; 3) Intervening in the field of sexual, gender and gendered minorities health.


Assuntos
Saúde Pública , Minorias Sexuais e de Gênero , Feminino , Humanos , Comportamento Sexual
8.
Neuroimage ; 258: 119356, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35659995

RESUMO

Tractography enables identifying and evaluating the healthy and diseased brain's white matter pathways from diffusion-weighted magnetic resonance imaging data. As previous evaluation studies have reported significant false-positive estimation biases, recent microstructure-informed tractography algorithms have been introduced to improve the trade-off between specificity and sensitivity. However, a major limitation for characterizing the performance of these techniques is the lack of ground truth brain data. In this study, we compared the performance of two relevant microstructure-informed tractography methods, SIFT2 and COMMIT, by assessing the subject specificity and reproducibility of their derived white matter pathways. Specifically, twenty healthy young subjects were scanned at eight different time points at two different sites. Subject specificity and reproducibility were evaluated using the whole-brain connectomes and a subset of 29 white matter bundles. Our results indicate that although the raw tractograms are more vulnerable to the presence of false-positive connections, they are highly reproducible, suggesting that the estimation bias is subject-specific. This high reproducibility was preserved when microstructure-informed tractography algorithms were used to filter the raw tractograms. Moreover, the resulting track-density images depicted a more uniform coverage of streamlines throughout the white matter, suggesting that these techniques could increase the biological meaning of the estimated fascicles. Notably, we observed an increased subject specificity by employing connectivity pre-processing techniques to reduce the underlaying noise and the data dimensionality (using principal component analysis), highlighting the importance of these tools for future studies. Finally, no strong bias from the scanner site or time between measurements was found. The largest intraindividual variance originated from the sole repetition of data measurements (inter-run).


Assuntos
Conectoma , Substância Branca , Adulto , Imagem de Tensor de Difusão , Reações Falso-Positivas , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Substância Branca/anatomia & histologia , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Adulto Jovem
9.
Neuroimage ; 257: 119327, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35636227

RESUMO

Limitations in the accuracy of brain pathways reconstructed by diffusion MRI (dMRI) tractography have received considerable attention. While the technical advances spearheaded by the Human Connectome Project (HCP) led to significant improvements in dMRI data quality, it remains unclear how these data should be analyzed to maximize tractography accuracy. Over a period of two years, we have engaged the dMRI community in the IronTract Challenge, which aims to answer this question by leveraging a unique dataset. Macaque brains that have received both tracer injections and ex vivo dMRI at high spatial and angular resolution allow a comprehensive, quantitative assessment of tractography accuracy on state-of-the-art dMRI acquisition schemes. We find that, when analysis methods are carefully optimized, the HCP scheme can achieve similar accuracy as a more time-consuming, Cartesian-grid scheme. Importantly, we show that simple pre- and post-processing strategies can improve the accuracy and robustness of many tractography methods. Finally, we find that fiber configurations that go beyond crossing (e.g., fanning, branching) are the most challenging for tractography. The IronTract Challenge remains open and we hope that it can serve as a valuable validation tool for both users and developers of dMRI analysis methods.


Assuntos
Conectoma , Substância Branca , Encéfalo/diagnóstico por imagem , Conectoma/métodos , Difusão , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos
10.
J Am Chem Soc ; 144(8): 3442-3448, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35171584

RESUMO

Recently, the formation of the ceramic-ionic liquid composite has attracted huge interest in the scientific community. In this work, we investigated the chemical reactions occurring between NASICON LAGP ceramic electrolyte and ionic liquid pyr13TFSI. This study allowed us to identify the cation exchange reaction pyr13-Li occurring on the LAGP surface, forming a LiTFSI salt that was detected by the nuclear magnetic resonance analysis. In addition, using 6Li foils, we succeeded in demonstrating that both LAGP and LiTFSI:pyr13TFSI participate in the diffusion of Li ions by the formation of an ionic bridge between two species.


Assuntos
Líquidos Iônicos , Cátions , Eletrólitos , Lítio
11.
Brain ; 144(7): 2107-2119, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34237143

RESUMO

Stroke patients vary considerably in terms of outcomes: some patients present 'natural' recovery proportional to their initial impairment (fitters), while others do not (non-fitters). Thus, a key challenge in stroke rehabilitation is to identify individual recovery potential to make personalized decisions for neuro-rehabilitation, obviating the 'one-size-fits-all' approach. This goal requires (i) the prediction of individual courses of recovery in the acute stage; and (ii) an understanding of underlying neuronal network mechanisms. 'Natural' recovery is especially variable in severely impaired patients, underscoring the special clinical importance of prediction for this subgroup. Fractional anisotropy connectomes based on individual tractography of 92 patients were analysed 2 weeks after stroke (TA) and their changes to 3 months after stroke (TC - TA). Motor impairment was assessed using the Fugl-Meyer Upper Extremity (FMUE) scale. Support vector machine classifiers were trained to separate patients with natural recovery from patients without natural recovery based on their whole-brain structural connectomes and to define their respective underlying network patterns, focusing on severely impaired patients (FMUE < 20). Prediction accuracies were cross-validated internally, in one independent dataset and generalized in two independent datasets. The initial connectome 2 weeks after stroke was capable of segregating fitters from non-fitters, most importantly among severely impaired patients (TA: accuracy = 0.92, precision = 0.93). Secondary analyses studying recovery-relevant network characteristics based on the selected features revealed (i) relevant differences between networks contributing to recovery at 2 weeks and network changes over time (TC - TA); and (ii) network properties specific to severely impaired patients. Important features included the parietofrontal motor network including the intraparietal sulcus, premotor and primary motor cortices and beyond them also attentional, somatosensory or multimodal areas (e.g. the insula), strongly underscoring the importance of whole-brain connectome analyses for better predicting and understanding recovery from stroke. Computational approaches based on structural connectomes allowed the individual prediction of natural recovery 2 weeks after stroke onset, especially in the difficult to predict group of severely impaired patients, and identified the relevant underlying neuronal networks. This information will permit patients to be stratified into different recovery groups in clinical settings and will pave the way towards personalized precision neurorehabilitative treatment.


Assuntos
Conectoma , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Máquina de Vetores de Suporte , Imagem de Tensor de Difusão , Humanos , Córtex Motor/fisiopatologia
12.
Stroke ; 52(6): 2115-2124, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33902299

RESUMO

BACKGROUND AND PURPOSE: Structural brain networks possess a few hubs, which are not only highly connected to the rest of the brain but are also highly connected to each other. These hubs, which form a rich-club, play a central role in global brain organization. To investigate whether the concept of rich-club sheds new light on poststroke recovery, we applied a novel network-theoretical quantification of lesions to patients with stroke and compared the outcomes with what lesion size alone would indicate. METHODS: Whole-brain structural networks of 73 patients with ischemic stroke were reconstructed using diffusion-weighted imaging data. Disconnectomes, a new type of network analyses, were constructed using only those fibers that pass through the lesion. Fugl-Meyer upper extremity scores and their changes were used to determine whether the patients show natural recovery or not. RESULTS: Cluster analysis revealed 3 patient clusters: small-lesion-good-recovery, midsized-lesion-poor-recovery (MLPR), and large-lesion-poor-recovery (LLPR). The small-lesion-good-recovery consisted of subjects whose lesions were small, and whose prospects for recovery were relatively good. To explain the nondifference in recovery between the MLPR and LLPR clusters despite the difference (LLPR>MLPR) in lesion volume, we defined the [Formula: see text] metric to be the sum of the entries in the disconnectome and, more importantly, the [Formula: see text] to be the sum of all entries in the disconnectome corresponding to edges with at least one node in the rich-club. Unlike lesion volume and corticospinal tract damage (MLPRLLPR) or showed no difference for [Formula: see text]. CONCLUSIONS: Smaller lesions that focus on the rich-club can be just as devastating as much larger lesions that do not focus on the rich-club, pointing to the role of the rich-club as a backbone for functional communication within brain networks and for recovery from stroke.


Assuntos
Conectoma , Imagem de Difusão por Ressonância Magnética , AVC Isquêmico , Recuperação de Função Fisiológica , Idoso , Feminino , Humanos , AVC Isquêmico/diagnóstico por imagem , AVC Isquêmico/fisiopatologia , Masculino , Pessoa de Meia-Idade
13.
Neuroimage ; 243: 118502, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34433094

RESUMO

White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same intended white matter pathways, which directly affects tractography results, quantification, and interpretation. In this study, we aim to evaluate and quantify the variability that arises from different protocols for bundle segmentation. Through an open call to users of fiber tractography, including anatomists, clinicians, and algorithm developers, 42 independent teams were given processed sets of human whole-brain streamlines and asked to segment 14 white matter fascicles on six subjects. In total, we received 57 different bundle segmentation protocols, which enabled detailed volume-based and streamline-based analyses of agreement and disagreement among protocols for each fiber pathway. Results show that even when given the exact same sets of underlying streamlines, the variability across protocols for bundle segmentation is greater than all other sources of variability in the virtual dissection process, including variability within protocols and variability across subjects. In order to foster the use of tractography bundle dissection in routine clinical settings, and as a fundamental analytical tool, future endeavors must aim to resolve and reduce this heterogeneity. Although external validation is needed to verify the anatomical accuracy of bundle dissections, reducing heterogeneity is a step towards reproducible research and may be achieved through the use of standard nomenclature and definitions of white matter bundles and well-chosen constraints and decisions in the dissection process.


Assuntos
Imagem de Tensor de Difusão/métodos , Dissecação/métodos , Substância Branca/diagnóstico por imagem , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Vias Neurais/diagnóstico por imagem
14.
Neuroimage ; 221: 117201, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32739552

RESUMO

Diffusion-weighted magnetic resonance imaging (DW-MRI) tractography is a non-invasive tool to probe neural connections and the structure of the white matter. It has been applied successfully in studies of neurological disorders and normal connectivity. Recent work has revealed that tractography produces a high incidence of false-positive connections, often from "bottleneck" white matter configurations. The rich literature in histological connectivity analysis studies in the macaque monkey enables quantitative evaluation of the performance of tractography algorithms. In this study, we use the intricate connections of frontal, cingulate, and parietal areas, well established by the anatomical literature, to derive a symmetrical histological connectivity matrix composed of 59 cortical areas. We evaluate the performance of fifteen diffusion tractography algorithms, including global, deterministic, and probabilistic state-of-the-art methods for the connectivity predictions of 1711 distinct pairs of areas, among which 680 are reported connected by the literature. The diffusion connectivity analysis was performed on a different ex-vivo macaque brain, acquired using multi-shell DW-MRI protocol, at high spatial and angular resolutions. Across all tested algorithms, the true-positive and true-negative connections were dominant over false-positive and false-negative connections, respectively. Moreover, three-quarters of streamlines had endpoints location in agreement with histological data, on average. Furthermore, probabilistic streamline tractography algorithms show the best performances in predicting which areas are connected. Altogether, we propose a method for quantitative evaluation of tractography algorithms, which aims at improving the sensitivity and the specificity of diffusion-based connectivity analysis. Overall, those results confirm the usefulness of tractography in predicting connectivity, although errors are produced. Many of the errors result from bottleneck white matter configurations near the cortical grey matter and should be the target of future implementation of methods.


Assuntos
Córtex Cerebral/anatomia & histologia , Imagem de Tensor de Difusão , Técnicas Histológicas , Rede Nervosa/anatomia & histologia , Técnicas de Rastreamento Neuroanatômico , Substância Branca/anatomia & histologia , Animais , Córtex Cerebral/diagnóstico por imagem , Imagem de Tensor de Difusão/normas , Técnicas Histológicas/normas , Macaca mulatta , Masculino , Rede Nervosa/diagnóstico por imagem , Técnicas de Rastreamento Neuroanatômico/normas , Substância Branca/diagnóstico por imagem
15.
Hum Brain Mapp ; 41(7): 1859-1874, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31925871

RESUMO

Investigative studies of white matter (WM) brain structures using diffusion MRI (dMRI) tractography frequently require manual WM bundle segmentation, often called "virtual dissection." Human errors and personal decisions make these manual segmentations hard to reproduce, which have not yet been quantified by the dMRI community. It is our opinion that if the field of dMRI tractography wants to be taken seriously as a widespread clinical tool, it is imperative to harmonize WM bundle segmentations and develop protocols aimed to be used in clinical settings. The EADC-ADNI Harmonized Hippocampal Protocol achieved such standardization through a series of steps that must be reproduced for every WM bundle. This article is an observation of the problematic. A specific bundle segmentation protocol was used in order to provide a real-life example, but the contribution of this article is to discuss the need for reproducibility and standardized protocol, as for any measurement tool. This study required the participation of 11 experts and 13 nonexperts in neuroanatomy and "virtual dissection" across various laboratories and hospitals. Intra-rater agreement (Dice score) was approximately 0.77, while inter-rater was approximately 0.65. The protocol provided to participants was not necessarily optimal, but its design mimics, in essence, what will be required in future protocols. Reporting tractometry results such as average fractional anisotropy, volume or streamline count of a particular bundle without a sufficient reproducibility score could make the analysis and interpretations more difficult. Coordinated efforts by the diffusion MRI tractography community are needed to quantify and account for reproducibility of WM bundle extraction protocols in this era of open and collaborative science.


Assuntos
Imagem de Tensor de Difusão/métodos , Anisotropia , Imagem de Difusão por Ressonância Magnética , Dissecação , Humanos , Variações Dependentes do Observador , Reprodutibilidade dos Testes , Substância Branca/diagnóstico por imagem
16.
J Magn Reson Imaging ; 51(1): 234-249, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31179595

RESUMO

BACKGROUND: Fiber tracking with diffusion-weighted MRI has become an essential tool for estimating in vivo brain white matter architecture. Fiber tracking results are sensitive to the choice of processing method and tracking criteria. PURPOSE: To assess the variability for an algorithm in group studies reproducibility is of critical context. However, reproducibility does not assess the validity of the brain connections. Phantom studies provide concrete quantitative comparisons of methods relative to absolute ground truths, yet do no capture variabilities because of in vivo physiological factors. The ISMRM 2017 TraCED challenge was created to fulfill the gap. STUDY TYPE: A systematic review of algorithms and tract reproducibility studies. SUBJECTS: Single healthy volunteers. FIELD STRENGTH/SEQUENCE: 3.0T, two different scanners by the same manufacturer. The multishell acquisition included b-values of 1000, 2000, and 3000 s/mm2 with 20, 45, and 64 diffusion gradient directions per shell, respectively. ASSESSMENT: Nine international groups submitted 46 tractography algorithm entries each consisting 16 tracts per scan. The algorithms were assessed using intraclass correlation (ICC) and the Dice similarity measure. STATISTICAL TESTS: Containment analysis was performed to assess if the submitted algorithms had containment within tracts of larger volume submissions. This also serves the purpose to detect if spurious submissions had been made. RESULTS: The top five submissions had high ICC and Dice >0.88. Reproducibility was high within the top five submissions when assessed across sessions or across scanners: 0.87-0.97. Containment analysis shows that the top five submissions are contained within larger volume submissions. From the total of 16 tracts as an outcome relatively the number of tracts with high, moderate, and low reproducibility were 8, 4, and 4. DATA CONCLUSION: The different methods clearly result in fundamentally different tract structures at the more conservative specificity choices. Data and challenge infrastructure remain available for continued analysis and provide a platform for comparison. LEVEL OF EVIDENCE: 5 Technical Efficacy Stage: 1 J. Magn. Reson. Imaging 2020;51:234-249.


Assuntos
Encéfalo/anatomia & histologia , Imagem de Tensor de Difusão/métodos , Imagem de Difusão por Ressonância Magnética , Humanos , Valores de Referência , Reprodutibilidade dos Testes
17.
Neuroimage ; 184: 964-980, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30282007

RESUMO

Many closed-form analytical models have been proposed to relate the diffusion-weighted magnetic resonance imaging (DW-MRI) signal to microstructural features of white matter tissues. These models generally make assumptions about the tissue and the diffusion processes which often depart from the biophysical reality, limiting their reliability and interpretability in practice. Monte Carlo simulations of the random walk of water molecules are widely recognized to provide near groundtruth for DW-MRI signals. However, they have mostly been limited to the validation of simpler models rather than used for the estimation of microstructural properties. This work proposes a general framework which leverages Monte Carlo simulations for the estimation of physically interpretable microstructural parameters, both in single and in crossing fascicles of axons. Monte Carlo simulations of DW-MRI signals, or fingerprints, are pre-computed for a large collection of microstructural configurations. At every voxel, the microstructural parameters are estimated by optimizing a sparse combination of these fingerprints. Extensive synthetic experiments showed that our approach achieves accurate and robust estimates in the presence of noise and uncertainties over fixed or input parameters. In an in vivo rat model of spinal cord injury, our approach provided microstructural parameters that showed better correspondence with histology than five closed-form models of the diffusion signal: MMWMD, NODDI, DIAMOND, WMTI and MAPL. On whole-brain in vivo data from the human connectome project (HCP), our method exhibited spatial distributions of apparent axonal radius and axonal density indices in keeping with ex vivo studies. This work paves the way for microstructure fingerprinting with Monte Carlo simulations used directly at the modeling stage and not only as a validation tool.


Assuntos
Encéfalo/anatomia & histologia , Imagem de Difusão por Ressonância Magnética , Processamento de Imagem Assistida por Computador/métodos , Método de Monte Carlo , Substância Branca/anatomia & histologia , Animais , Simulação por Computador , Feminino , Humanos , Modelos Teóricos , Ratos Long-Evans , Razão Sinal-Ruído
18.
Neuroimage ; 184: 140-160, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30193974

RESUMO

Spherical deconvolution methods are widely used to estimate the brain's white-matter fiber orientations from diffusion MRI data. In this study, eight spherical deconvolution algorithms were implemented and evaluated. These included two model selection techniques based on the extended Bayesian information criterion (i.e., best subset selection and the least absolute shrinkage and selection operator), iteratively reweighted l2- and l1-norm approaches to approximate the l0-norm, sparse Bayesian learning, Cauchy deconvolution, and two accelerated Richardson-Lucy algorithms. Results from our exhaustive evaluation show that there is no single optimal method for all different fiber configurations, suggesting that further studies should be conducted to find the optimal way of combining solutions from different methods. We found l0-norm regularization algorithms to resolve more accurately fiber crossings with small inter-fiber angles. However, in voxels with very dominant fibers, algorithms promoting more sparsity are less accurate in detecting smaller fibers. In most cases, the best algorithm to reconstruct fiber crossings with two fibers did not perform optimally in voxels with one or three fibers. Therefore, simplified validation systems as employed in a number of previous studies, where only two fibers with similar volume fractions were tested, should be avoided as they provide incomplete information. Future studies proposing new reconstruction methods based on high angular resolution diffusion imaging data should validate their results by considering, at least, voxels with one, two, and three fibers, as well as voxels with dominant fibers and different diffusion anisotropies.


Assuntos
Algoritmos , Encéfalo/anatomia & histologia , Imagem de Difusão por Ressonância Magnética/métodos , Substância Branca/anatomia & histologia , Teorema de Bayes , Imagem de Tensor de Difusão/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador , Inquéritos e Questionários
19.
Neuroimage ; 185: 1-11, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30317017

RESUMO

Diffusion MRI fiber tractography is widely used to probe the structural connectivity of the brain, with a range of applications in both clinical and basic neuroscience. Despite widespread use, tractography has well-known pitfalls that limits the anatomical accuracy of this technique. Numerous modern methods have been developed to address these shortcomings through advances in acquisition, modeling, and computation. To test whether these advances improve tractography accuracy, we organized the 3-D Validation of Tractography with Experimental MRI (3D-VoTEM) challenge at the ISBI 2018 conference. We made available three unique independent tractography validation datasets - a physical phantom and two ex vivo brain specimens - resulting in 176 distinct submissions from 9 research groups. By comparing results over a wide range of fiber complexities and algorithmic strategies, this challenge provides a more comprehensive assessment of tractography's inherent limitations than has been reported previously. The central results were consistent across all sub-challenges in that, despite advances in tractography methods, the anatomical accuracy of tractography has not dramatically improved in recent years. Taken together, our results independently confirm findings from decades of tractography validation studies, demonstrate inherent limitations in reconstructing white matter pathways using diffusion MRI data alone, and highlight the need for alternative or combinatorial strategies to accurately map the fiber pathways of the brain.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/anatomia & histologia , Imagem de Tensor de Difusão/métodos , Processamento de Imagem Assistida por Computador/métodos , Vias Neurais/anatomia & histologia , Humanos
20.
Sociol Health Illn ; 41(3): 484-501, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30450606

RESUMO

The advancements of "treatment as prevention" (TasP), "undetectable viral load" (UVL) and "pre-exposure prophylaxis" (PrEP) are redefining HIV prevention standards. Relying on the concept of biosociality, this article explores how gay men rally around, debate, and sometimes disagree about these emerging HIV prevention technologies. This article is based on data from the Resonance Project, a Canadian community-based research project. Twelve focus groups (totalling 86 gay and bisexual men) were held in three Canadian cities (Montreal, Toronto, Vancouver) in 2013-2014. Respondents view UVL and PrEP through the prism of their generational experience of HIV prevention. In this respect, biosocialities highlight an experiential dimension that is tied to the context of the HIV epidemic. The biosocialities of HIV prevention are also built around serological identities. However, our study shows the diversity of these positions. Analysis grounded in biosocialities is useful for better understanding how scientific information circulates, is made sense of, and generates debate among gay men.


Assuntos
Antirretrovirais/administração & dosagem , Bissexualidade/psicologia , Infecções por HIV/prevenção & controle , Homossexualidade Masculina/psicologia , Profilaxia Pré-Exposição/métodos , Minorias Sexuais e de Gênero/psicologia , Adulto , Canadá , Pesquisa Participativa Baseada na Comunidade , Grupos Focais , Infecções por HIV/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Grupos Raciais , Comportamento de Redução do Risco , Assunção de Riscos , Responsabilidade Social , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA