Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Neuroinflammation ; 20(1): 243, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872624

RESUMO

BACKGROUND: Myelin that surrounds axons breaks in trauma and disease; e.g., peripheral nerve and spinal cord injuries (PNI and SCI) and multiple sclerosis (MS). Resulting myelin debris hinders repair if not effectively scavenged by Schwann cells and macrophages in PNI and by microglia in SCI and MS. We showed previously that myelin debris evades phagocytosis as CD47 on myelin ligates SIRPα (signal regulatory protein-α) on macrophages and microglia, triggering SIRPα to inhibit phagocytosis in phagocytes. Using PNI as a model, we tested the in vivo significance of SIRPα-dependent phagocytosis inhibition in SIRPα null mice, showing that SIRPα deletion leads to accelerated myelin debris clearance, axon regeneration and recovery of function from PNI. Herein, we tested how deletion of CD47, a SIRPα ligand and a cell surface receptor on Schwann cells and phagocytes, affects recovery from PNI. METHODS: Using CD47 null (CD47-/-) and wild type mice, we studied myelin disruption/dismantling and debris clearance, axon regeneration and recovery of function from PNI. RESULTS: As expected from CD47 on myelin acting as a SIRPα ligand that normally triggers SIRPα-dependent phagocytosis inhibition in phagocytes, myelin debris clearance, axon regeneration and function recovery were all faster in CD47-/- mice than in wild type mice. Unexpectedly compared with wild type mice, myelin debris clearance started sooner and CD47-deleted Schwann cells displayed enhanced disruption/dismantling and scavenging of myelin in CD47-/- mice. Furthermore, CD47-deleted macrophages from CD47-/- mice phagocytosed more myelin debris than CD47-expressing phagocytes from wild type mice. CONCLUSIONS: This study reveals two novel normally occurring CD47-dependent mechanisms that impede myelin debris clearance. First, CD47 expressed on Schwann cells inhibits myelin disruption/dismantling and debris scavenging in Schwann cells. Second, CD47 expressed on macrophages inhibits myelin debris phagocytosis in phagocytes. The two add to a third mechanism that we previously documented whereby CD47 on myelin ligates SIRPα on macrophages and microglia, triggering SIRPα-dependent phagocytosis inhibition in phagocytes. Thus, CD47 plays multiple inhibitory roles that combined impede myelin debris clearance, leading to delayed recovery from PNI. Similar inhibitory roles in microglia may hinder recovery from other pathologies in which repair depends on efficient phagocytosis (e.g., SCI and MS).


Assuntos
Antígeno CD47 , Bainha de Mielina , Traumatismos dos Nervos Periféricos , Animais , Camundongos , Axônios/patologia , Antígeno CD47/genética , Antígeno CD47/metabolismo , Ligantes , Macrófagos/metabolismo , Bainha de Mielina/metabolismo , Regeneração Nervosa , Traumatismos dos Nervos Periféricos/metabolismo , Fagocitose , Células de Schwann/metabolismo
2.
Mol Psychiatry ; 24(11): 1576-1582, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31164699

RESUMO

The Genomics Workgroup of the National Advisory Mental Health Council (NAMHC) recently issued a set of recommendations for advancing the NIMH psychiatric genetics research program and prioritizing subsequent follow-up studies. The report emphasized the primacy of rigorous statistical support from properly designed, well-powered studies for pursuing genetic variants robustly associated with disease. Here we discuss the major points NIMH program staff consider when assessing research applications based on common and rare variants, as well as genetic syndromes, associated with psychiatric disorders. These are broad guiding principles for investigators to consider prior to submission of their applications. NIMH staff weigh these points in the context of reviewer comments, the existing literature, and current investments in related projects. Following the recommendations of the NAMHC, statistical strength and robustness of the underlying genetic discovery weighs heavily in our funding considerations as does the suitability of the proposed experimental approach. We specifically address our evaluation of applications motivated in whole, or in part, by an association between human DNA sequence variation and a disease or trait relevant to the mission of the NIMH.


Assuntos
Genômica/tendências , Transtornos Mentais/genética , Saúde Mental/tendências , Humanos , National Institute of Mental Health (U.S.) , Estados Unidos
3.
Neurobiol Learn Mem ; 155: 239-248, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30099202

RESUMO

Earlier initiation of smoking correlates with higher risk of nicotine dependence, mental health problems, and cognitive impairments. Additionally, exposure to nicotine and/or tobacco smoke during critical developmental periods is associated with lasting epigenetic modifications and altered gene expression. This study examined whether adolescent nicotine exposure alters adult hippocampus-dependent learning, involving persistent changes in hippocampal DNA methylation and if choline, a dietary methyl donor, would reverse and mitigate these alterations. Mice were chronically treated with nicotine (12.6 mg/kg/day) starting at post-natal day 23 (pre-adolescent), p38 (late adolescent), or p54 (adult) for 12 days followed by a 30-day period during which they consumed either standard chow or chow supplemented with choline (9 g/kg). Mice then were tested for fear-conditioning and dorsal hippocampi were dissected for whole genome methylation and selected gene expression analyses. Nicotine exposure starting at p21 or p38, but not p54, disrupted adult hippocampus-dependent fear conditioning. Choline supplementation ameliorated these deficits. 462 genes in adult dorsal hippocampus from mice exposed to nicotine as adolescents showed altered promoter methylation that was reversed by choline supplementation. Gene network analysis revealed that chromatin remodeling genes were the most enriched category whose methylation was altered by nicotine and reversed by choline dietary supplementation. Two key chromatin remodeling genes, Smarca2 and Bahcc1, exhibited inversely correlated changes in methylation and expression due to nicotine exposure; this was reversed by choline. Our findings support a role for epigenetic modification of hippocampal chromatin remodeling genes in long-term learning deficits induced by adolescent nicotine and their amelioration by dietary choline supplementation.


Assuntos
Colina/administração & dosagem , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Condicionamento Clássico/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Nicotina/administração & dosagem , Fatores Etários , Animais , Fumar Cigarros/genética , Fumar Cigarros/psicologia , Condicionamento Clássico/fisiologia , Metilação de DNA , Medo , Hipocampo/metabolismo , Masculino , Camundongos Endogâmicos C57BL
4.
Artigo em Inglês | MEDLINE | ID: mdl-27312741

RESUMO

The gene-environment interactions that underlie development and progression of psychiatric illness are poorly understood. Despite a century of progress, genetic approaches have failed to identify new treatment modalities, perhaps because of the heterogeneity of the disorders and lack of understanding of mechanisms. Recent exploration into epigenetic mechanisms in health and disease has uncovered changes in DNA methylation and chromatin structure that may contribute to psychiatric disorders. Epigenetic changes suggest a variety of new therapeutic options due to their reversible chemistry. However, distinguishing causal links between epigenetic changes and disease from changes consequent to life experience has remained problematic. Here we define epigenetics and explore aspects of epigenetics relevant to causes and mechanisms of psychiatric disease, and speculate on future directions.


Assuntos
Metilação de DNA , Epigênese Genética , Transtornos Mentais/genética , Animais , Montagem e Desmontagem da Cromatina , Interação Gene-Ambiente , Predisposição Genética para Doença , Hereditariedade , Humanos , Transtornos Mentais/fisiopatologia , Transtornos Mentais/psicologia , Linhagem , Fenótipo , Fatores de Risco
5.
Artigo em Inglês | MEDLINE | ID: mdl-27207918

RESUMO

BACKGROUND: Reduction in brain volume, especially gray matter volume, has been shown to be one of the many deleterious effects of prolonged alcohol consumption. High variance in the degree of gray matter tissue shrinkage among alcohol-dependent individuals and a previous neuroimaging genetics report suggest the involvement of environmental and/or genetic factors, such as superoxide dismutase 2 (SOD2). Identification of such underlying factors will help in the clinical management of alcohol dependence. METHODS: We analyzed quantitative magnetic resonance imaging and genotype data from 103 alcohol users, including both light drinkers and treatment-seeking alcohol-dependent individuals. Genotyping was performed using a custom gene array that included genes selected from 8 pathways relevant to chronic alcohol-related brain volume loss. RESULTS: We replicated a significant association of a functional SOD2 single nucleotide polymorphism with normalized gray matter volume, which had been reported previously in an independent smaller sample of alcohol-dependent individuals. The SOD2-related genetic protection was observed only at the cohort's lower drinking range. Additional associations between normalized gray matter volume and other candidate genes such as alcohol dehydrogenase gene cluster (ADH), GCLC, NOS3, and SYT1 were observed across the entire sample but did not survive corrections for multiple comparisons. CONCLUSION: Converging independent evidence for a SOD2 gene association with gray matter volume shrinkage in chronic alcohol users suggests that SOD2 genetic variants predict differential brain volume loss mediated by free radicals. This study also provides the first catalog of genetic variations relevant to gray matter loss in chronic alcohol users. The identified gene-brain structure relationships are functionally pertinent and merit replication.

6.
J Neuroinflammation ; 8: 24, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21401967

RESUMO

BACKGROUND: Traumatic injury to axons produces breakdown of axons and myelin at the site of the lesion and then further distal to this where Wallerian degeneration develops. The rapid removal of degenerated myelin by phagocytosis is advantageous for repair since molecules in myelin impede regeneration of severed axons. Thus, revealing mechanisms that regulate myelin phagocytosis by macrophages and microglia is important. We hypothesize that myelin regulates its own phagocytosis by simultaneous activation and down-regulation of microglial and macrophage responses. Activation follows myelin binding to receptors that mediate its phagocytosis (e.g. complement receptor-3), which has been previously studied. Down-regulation, which we test here, follows binding of myelin CD47 to the immune inhibitory receptor SIRPα (signal regulatory protein-α) on macrophages and microglia. METHODS: CD47 and SIRPα expression was studied by confocal immunofluorescence microscopy, and myelin phagocytosis by ELISA. RESULTS: We first document that myelin, oligodendrocytes and Schwann cells express CD47 without SIRPα and further confirm that microglia and macrophages express both CD47 and SIRPα. Thus, CD47 on myelin can bind to and subsequently activate SIRPα on phagocytes, a prerequisite for CD47/SIRPα-dependent down-regulation of CD47+/+ myelin phagocytosis by itself. We then demonstrate that phagocytosis of CD47+/+ myelin is augmented when binding between myelin CD47 and SIRPα on phagocytes is blocked by mAbs against CD47 and SIRPα, indicating that down-regulation of phagocytosis indeed depends on CD47-SIRPα binding. Further, phagocytosis in serum-free medium of CD47+/+ myelin is augmented after knocking down SIRPα levels (SIRPα-KD) in phagocytes by lentiviral infection with SIRPα-shRNA, whereas phagocytosis of myelin that lacks CD47 (CD47-/-) is not. Thus, myelin CD47 produces SIRPα-dependent down-regulation of CD47+/+ myelin phagocytosis in phagocytes. Unexpectedly, phagocytosis of CD47-/- myelin by SIRPα-KD phagocytes, which is not altered from normal when tested in serum-free medium, is augmented when serum is present. Therefore, both myelin CD47 and serum may each promote SIRPα-dependent down-regulation of myelin phagocytosis irrespective of the other. CONCLUSIONS: Myelin down-regulates its own phagocytosis through CD47-SIRPα interactions. It may further be argued that CD47 functions normally as a marker of "self" that helps protect intact myelin and myelin-forming oligodendrocytes and Schwann cells from activated microglia and macrophages. However, the very same mechanism that impedes phagocytosis may turn disadvantageous when rapid clearance of degenerated myelin is helpful.


Assuntos
Antígeno CD47/metabolismo , Macrófagos/fisiologia , Microglia/fisiologia , Bainha de Mielina/metabolismo , Fagocitose/fisiologia , Receptores Imunológicos/metabolismo , Animais , Axônios/metabolismo , Axônios/patologia , Antígeno CD47/genética , Células Cultivadas , Regulação para Baixo , Fibroblastos/citologia , Fibroblastos/metabolismo , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Microglia/citologia , Bainha de Mielina/patologia , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Ratos , Ratos Sprague-Dawley , Células de Schwann/citologia , Células de Schwann/metabolismo , Degeneração Walleriana/metabolismo , Degeneração Walleriana/patologia
7.
FASEB J ; 24(7): 2211-21, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20179145

RESUMO

A major innate immune function of microglia in the central nervous system is receptor-mediated phagocytosis of tissue debris and pathogens. We studied how phagocytosis of degenerated myelin (i.e., tissue debris) and zymosan (i.e., yeast pathogen) is regulated by the cytoskeleton through myosin light chain kinase (MLCK) and the small GTPase Rho and its effector Rho-kinase (ROCK) in primary mouse microglia. Our observations suggest a dual role of activation and inhibition of phagocytosis by MLCK and Rho/ROCK signaling. MLCK activated, whereas Rho/ROCK down-regulated complement receptor-3 (CR3) mediated, phagocytosis of C3bi-opsonized and nonopsonized myelin. These opposing roles of MLCK and Rho/ROCK depended on the preferential spatial localization of their distinctive functions. MLCK further activated, and Rho/ROCK down-regulated, phagocytosis of nonopsonized zymosan by nonopsonic receptors (e.g., Dectin-1). In contrast, MLCK down-regulated, but Rho/ROCK activated, CR3-mediated phagocytosis of C3bi-opsonized zymosan. Thus MLCK and Rho/ROCK can each activate or inhibit phagocytosis but always act in opposition. Whether activation or inhibition occurs depends on the nature of the phagocytosed particle (C3bi-opsonized or nonopsonized myelin or zymosan) and the receptors mediating each phagocytosis.


Assuntos
Citoesqueleto/fisiologia , Microglia/imunologia , Bainha de Mielina/imunologia , Fagocitose , Zimosan/imunologia , Animais , Imunidade Inata , Camundongos , Quinase de Cadeia Leve de Miosina/imunologia , Proteínas rho de Ligação ao GTP/imunologia , Quinases Associadas a rho/imunologia
9.
Glia ; 56(15): 1607-13, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18615637

RESUMO

The removal of degenerated myelin is essential for repair in Wallerian degeneration that follows traumatic injury to axons and in autoimmune demyelinating diseases (e.g., multiple sclerosis). Microglia can remove degenerated myelin through phosphatidylinositol-3-kinase (PI3K)-dependent phagocytosis mediated by complement receptor-3 (CR3/MAC-1) and scavenger receptor-AI/II (SRAI/II). Paradoxically, these receptors are expressed in microglia after injury but myelin is not phagocytosed. Additionally, Galectin-3/MAC-2 is expressed in microglia that phagocytose but not in microglia that do not phagocytose, suggesting that Galectin-3/MAC-2 is instrumental in activating phagocytosis. S-trans, trans-farnesylthiosalicylic (FTS), which inhibits Galectin-3/MAC-2 dependent activation of PI3K through Ras, inhibited phagocytosis. K-Ras-GTP levels and PI3K activity increased during normal phagocytosis and decreased during FTS-inhibited phagocytosis. Galectin-3/MAC-2, which binds and stabilizes active Ras, coimmunoprecipitated with Ras and levels of the coimmunoprecipitate increased during normal phagocytosis. A role for Galectin-3/MAC-2 dependent activation of PI3K through Ras, mostly K-Ras, is thus suggested. An explanation may thus be offered for deficient phagocytosis by microglia that express CR3/MAC-1 and SRAI/II without Galectin-3/MAC-2 and efficient phagocytosis when CR3/MAC-1 and SRAI/II are co-expressed with Galectin-3/MAC-2.


Assuntos
Galectina 3/metabolismo , Antígeno de Macrófago 1/metabolismo , Microglia/imunologia , Bainha de Mielina/metabolismo , Fagocitose/imunologia , Receptores Depuradores Classe A/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/fisiopatologia , Gliose/imunologia , Gliose/metabolismo , Gliose/fisiopatologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regeneração Nervosa/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/imunologia , Degeneração Walleriana/imunologia , Degeneração Walleriana/metabolismo , Degeneração Walleriana/fisiopatologia , Proteínas ras/metabolismo
10.
Front Cell Neurosci ; 8: 104, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24795566

RESUMO

The innate immune function of phagocytosis of apoptotic cells, tissue debris, pathogens, and cancer cells is essential for homeostasis, tissue repair, fighting infection, and combating malignancy. Phagocytosis is carried out in the central nervous system (CNS) by resident microglia and in both CNS and peripheral nervous system by recruited macrophages. While phagocytosis proceeds, bystander healthy cells protect themselves by sending a "do not eat me" message to phagocytes as CD47 on their surface ligates immune inhibitory receptor SIRPα on the surface of phagocytes and SIRPα then produces the signaling which inhibits phagocytosis. This helpful mechanism becomes harmful when tissue debris and unhealthy cells inhibit their own phagocytosis by employing the same mechanism. However, the inhibitory signaling that SIRPα produces has not been fully revealed. We focus here on how SIRPα inhibits the phagocytosis of the tissue debris "degenerated myelin" which hinders repair in axonal injury and neurodegenerative diseases. We tested whether SIRPα inhibits phagocytosis by regulating cytoskeleton function through paxillin and cofilin since (a) the cytoskeleton generates the mechanical forces that drive phagocytosis and (b) both paxillin and cofilin control cytoskeleton function. Paxillin and cofilin were transiently activated in microglia as phagocytosis was activated. In contrast, paxillin and cofilin were continuously activated and phagocytosis augmented in microglia in which SIRPα expression was knocked-down by SIRPα-shRNA. Further, levels of phagocytosis, paxillin activation, and cofilin activation positively correlated with one another. Taken together, these observations suggest a novel mechanism whereby paxillin and cofilin are targeted to control phagocytosis by both the activating signaling that phagocytic receptors produce by promoting the activation of paxillin and cofilin and the inhibiting signaling that immune inhibitory SIRPα produces by promoting the inactivation of paxillin and cofilin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA