Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(37): E7670-E7678, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28847944

RESUMO

Do corals form their skeletons by precipitation from solution or by attachment of amorphous precursor particles as observed in other minerals and biominerals? The classical model assumes precipitation in contrast with observed "vital effects," that is, deviations from elemental and isotopic compositions at thermodynamic equilibrium. Here, we show direct spectromicroscopy evidence in Stylophora pistillata corals that two amorphous precursors exist, one hydrated and one anhydrous amorphous calcium carbonate (ACC); that these are formed in the tissue as 400-nm particles; and that they attach to the surface of coral skeletons, remain amorphous for hours, and finally, crystallize into aragonite (CaCO3). We show in both coral and synthetic aragonite spherulites that crystal growth by attachment of ACC particles is more than 100 times faster than ion-by-ion growth from solution. Fast growth provides a distinct physiological advantage to corals in the rigors of the reef, a crowded and fiercely competitive ecosystem. Corals are affected by warming-induced bleaching and postmortem dissolution, but the finding here that ACC particles are formed inside tissue may make coral skeleton formation less susceptible to ocean acidification than previously assumed. If this is how other corals form their skeletons, perhaps this is how a few corals survived past CO2 increases, such as the Paleocene-Eocene Thermal Maximum that occurred 56 Mya.


Assuntos
Antozoários/metabolismo , Carbonato de Cálcio/química , Carbonato de Cálcio/metabolismo , Animais , Antozoários/crescimento & desenvolvimento , Antozoários/fisiologia , Calcificação Fisiológica/fisiologia , Recifes de Corais , Cristalização , Ecossistema , Concentração de Íons de Hidrogênio , Minerais , Água do Mar/química
2.
Proc Natl Acad Sci U S A ; 111(4): 1304-9, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24434555

RESUMO

The physical basis for how macromolecules regulate the onset of mineral formation in calcifying tissues is not well established. A popular conceptual model assumes the organic matrix provides a stereochemical match during cooperative organization of solute ions. In contrast, another uses simple binding assays to identify good promoters of nucleation. Here, we reconcile these two views and provide a mechanistic explanation for template-directed nucleation by correlating heterogeneous nucleation barriers with crystal-substrate-binding free energies. We first measure the kinetics of calcite nucleation onto model substrates that present different functional group chemistries (carboxyl, thiol, phosphate, and hydroxyl) and conformations (C11 and C16 chain lengths). We find rates are substrate-specific and obey predictions of classical nucleation theory at supersaturations that extend above the solubility of amorphous calcium carbonate. Analysis of the kinetic data shows the thermodynamic barrier to nucleation is reduced by minimizing the interfacial free energy of the system, γ. We then use dynamic force spectroscopy to independently measure calcite-substrate-binding free energies, ΔGb. Moreover, we show that within the classical theory of nucleation, γ and ΔGb should be linearly related. The results bear out this prediction and demonstrate that low-energy barriers to nucleation correlate with strong crystal-substrate binding. This relationship is general to all functional group chemistries and conformations. These findings provide a physical model that reconciles the long-standing concept of templated nucleation through stereochemical matching with the conventional wisdom that good binders are good nucleators. The alternative perspectives become internally consistent when viewed through the lens of crystal-substrate binding.

3.
Proc Natl Acad Sci U S A ; 110(23): 9261-6, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23690577

RESUMO

Calcified skeletons are produced within complex assemblages of proteins and polysaccharides whose roles in mineralization are not well understood. Here we quantify the kinetics of calcite nucleation onto a suite of high-purity polysaccharide (PS) substrates under controlled conditions. The energy barriers to nucleation are PS-specific by a systematic relationship to PS charge density and substrate structure that is rooted in minimization of the competing substrate-crystal and substrate-liquid interfacial energies. Chitosan presents a low-energy barrier to nucleation because its near-neutral charge favors formation of a substrate-crystal interface, thus reducing substrate interactions with water. Progressively higher barriers are measured for negatively charged alginates and heparin that favor contact with the solution over the formation of new substrate-crystal interfaces. The findings support a directing role for PS in biomineral formation and demonstrate that substrate-crystal interactions are one end-member in a larger continuum of competing forces that regulate heterogeneous crystal nucleation.


Assuntos
Calcificação Fisiológica/fisiologia , Carbonato de Cálcio/química , Modelos Químicos , Polissacarídeos/química , Cristalização , Galvanoplastia , Cinética , Microscopia Eletrônica de Varredura , Silício
4.
ACS Nano ; 11(7): 6612-6622, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28564539

RESUMO

Coral skeletons were long assumed to have a spherulitic structure, that is, a radial distribution of acicular aragonite (CaCO3) crystals with their c-axes radiating from series of points, termed centers of calcification (CoCs). This assumption was based on morphology alone, not on crystallography. Here we measure the orientation of crystals and nanocrystals and confirm that corals grow their skeletons in bundles of aragonite crystals, with their c-axes and long axes oriented radially and at an angle from the CoCs, thus precisely as expected for feather-like or "plumose" spherulites. Furthermore, we find that in both synthetic and coral aragonite spherulites at the nanoscale adjacent crystals have similar but not identical orientations, thus demonstrating by direct observation that even at nanoscale the mechanism of spherulite formation is non-crystallographic branching (NCB), as predicted by theory. Finally, synthetic aragonite spherulites and coral skeletons have similar angle spreads, and angular distances of adjacent crystals, further confirming that coral skeletons are spherulites. This is important because aragonite grows anisotropically, 10 times faster along the c-axis than along the a-axis direction, and spherulites fill space with crystals growing almost exclusively along the c-axis, thus they can fill space faster than any other aragonite growth geometry, and create isotropic materials from anisotropic crystals. Greater space filling rate and isotropic mechanical behavior are key to the skeleton's supporting function and therefore to its evolutionary success. In this sense, spherulitic growth is Nature's 3D printing.

5.
Science ; 358(6368): 1294-1298, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29217569

RESUMO

In contrast to synthetic materials, materials produced by organisms are formed in ambient conditions and with a limited selection of elements. Nevertheless, living organisms reveal elegant strategies for achieving specific functions, ranging from skeletal support to mastication, from sensors and defensive tools to optical function. Using state-of-the-art characterization techniques, we present a biostrategy for strengthening and toughening the otherwise brittle calcite optical lenses found in the brittlestar Ophiocoma wendtii This intriguing process uses coherent nanoprecipitates to induce compressive stresses on the host matrix, functionally resembling the Guinier-Preston zones known in classical metallurgy. We believe that these calcitic nanoparticles, being rich in magnesium, segregate during or just after transformation from amorphous to crystalline phase, similarly to segregation behavior from a supersaturated quenched alloy.


Assuntos
Produtos Biológicos/química , Carbonato de Cálcio/química , Equinodermos/química , Nanopartículas/química , Animais , Cristalização , Magnésio/química , Estresse Mecânico
6.
J Colloid Interface Sci ; 370(1): 192-200, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22244865

RESUMO

Oxide-supported phospholipid bilayers (SPBs) used as biomimetic membranes are significant for a broad range of applications including improvement of biomedical devices and biosensors, and in understanding biomineralization processes and the possible role of mineral surfaces in the evolution of pre-biotic membranes. Continuous-coverage and/or stacked SPBs retain properties (e.g., fluidity) more similar to native biological membranes, which is desirable for most applications. Using neutron reflectivity, we examined the role of oxide surface charge (by varying pH and ionic strength) and of divalent Ca(2+) in controlling surface coverage and potential stacking of dipalmitoylphosphatidylcholine (DPPC) bilayers on the (11 ̅20) face of sapphire (α-Al(2)O(3)). Nearly full bilayers were formed at low to neutral pH, when the sapphire surface is positively charged, and at low ionic strength (I=15 mM NaCl). Coverage decreased at higher pH, close to the isoelectric point of sapphire, and also at high I≥210 mM, or with addition of 2mM Ca(2+). The latter two effects are not additive, suggesting that Ca(2+) mitigates the effect of higher I. These trends agree with previous results for phospholipid adsorption on α-Al(2)O(3) particles determined by adsorption isotherms and on single-crystal (10 ̅10) sapphire by atomic force microscopy, suggesting consistency of oxide surface chemistry-dependent effects across experimental techniques.


Assuntos
Óxido de Alumínio/química , Bicamadas Lipídicas/química , Difração de Nêutrons/métodos , Óxidos/química , Fosfolipídeos/química , 1,2-Dipalmitoilfosfatidilcolina/química , Adsorção , Cálcio , Cátions Bivalentes , Concentração de Íons de Hidrogênio , Concentração Osmolar , Espalhamento a Baixo Ângulo , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA