Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurooncol ; 153(2): 303-311, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33983570

RESUMO

PURPOSE: MRI is the standard imaging modality used for diagnosis, treatment planning, and post-treatment management of gliomas. Contrast-enhanced T1-weighted (CE-T1w) MRI is used to plan biopsy and radiation for grade IV gliomas but is less effective for grade II and III gliomas (i.e., low-to-intermediate grade gliomas) which may have minimal or no enhancement. Magnetic resonance spectroscopic imaging (MRSI) is an advanced MRI technique that has been shown, to improve diagnostic yield of biopsy and target delineation for grade IV glioma. The purpose of this study is to determine if MRSI can improve characterization and tissue sampling of low-to-intermediate grade gliomas. METHODS: Prospective grade II and grade III glioma patients were enrolled to undergo whole brain high-resolution MRSI prior to tissue sampling. Choline/N-acetyl-aspartate (Cho/NAA) maps were overlaid on anatomic imaging and imported into stereotactic biopsy software. Patients were treated with standard-of-care surgery and radiation. Volumes of spectroscopically abnormal tissue were generated and compared with anatomic imaging and areas of enhancing recurrence on follow-up imaging. RESULTS: Ten patients had pathologic diagnosis of grade II (n = 4) or grade III (n = 6) with a median follow-up of 27.3 months. Five patients had recurrence, and regions of recurrence were found to overlap with metabolically abnormal regions on MRSI at the time of diagnosis. CONCLUSION: MRSI in low-to-intermediate grade glioma patients is predictive of areas of subsequent recurrence. Larger studies are needed to determine if MRSI can be used to guide surgical and radiation treatment planning in these patients.


Assuntos
Neoplasias Encefálicas , Glioma , Encéfalo , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Glioma/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Estudos Prospectivos
2.
Tomography ; 9(2): 633-646, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36961010

RESUMO

Radiation therapy (RT) is a critical part of definitive therapy for pediatric high-grade glioma (pHGG). RT is designed to treat residual tumor defined on conventional MRI (cMRI), though pHGG lesions may be ill-characterized on standard imaging. Spectroscopic MRI (sMRI) measures endogenous metabolite concentrations in the brain, and Choline (Cho)/N-acetylaspartate (NAA) ratio is a highly sensitive biomarker for metabolically active tumor. We provide a preliminary report of our study introducing a novel treatment approach of whole brain sMRI-guided proton therapy for pHGG. An observational cohort (c1 = 10 patients) receives standard of care RT; a therapeutic cohort (c2 = 15 patients) receives sMRI-guided proton RT. All patients undergo cMRI and sMRI, a high-resolution 3D whole-brain echo-planar spectroscopic imaging (EPSI) sequence (interpolated resolution of 12 µL) prior to RT and at several follow-up timepoints integrated into diagnostic scans. Treatment volumes are defined by cMRI for c1 and by cMRI and Cho/NAA ≥ 2x for c2. A longitudinal imaging database is used to quantify changes in lesion and metabolite volumes. Four subjects have been enrolled (c1 = 1/c2 = 3) with sMRI imaging follow-up of 4-18 months. Preliminary data suggest sMRI improves identification of pHGG infiltration based on abnormal metabolic activity, and using proton therapy to target sMRI-defined high-risk regions is safe and feasible.


Assuntos
Neoplasias Encefálicas , Glioma , Terapia com Prótons , Humanos , Criança , Espectroscopia de Ressonância Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Glioma/diagnóstico por imagem , Glioma/radioterapia , Imageamento por Ressonância Magnética/métodos
3.
Tomography ; 9(3): 1052-1061, 2023 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-37218946

RESUMO

Accurate radiation therapy (RT) targeting is crucial for glioblastoma treatment but may be challenging using clinical imaging alone due to the infiltrative nature of glioblastomas. Precise targeting by whole-brain spectroscopic MRI, which maps tumor metabolites including choline (Cho) and N-acetylaspartate (NAA), can quantify early treatment-induced molecular changes that other traditional modalities cannot measure. We developed a pipeline to determine how spectroscopic MRI changes during early RT are associated with patient outcomes to provide insight into the utility of adaptive RT planning. Data were obtained from a study (NCT03137888) where glioblastoma patients received high-dose RT guided by the pre-RT Cho/NAA twice normal (Cho/NAA ≥ 2x) volume, and received spectroscopic MRI scans pre- and mid-RT. Overlap statistics between pre- and mid-RT scans were used to quantify metabolic activity changes after two weeks of RT. Log-rank tests were used to quantify the relationship between imaging metrics and patient overall and progression-free survival (OS/PFS). Patients with lower Jaccard/Dice coefficients had longer PFS (p = 0.045 for both), and patients with lower Jaccard/Dice coefficients had higher OS trending towards significance (p = 0.060 for both). Cho/NAA ≥ 2x volumes changed significantly during early RT, putting healthy tissue at risk of irradiation, and warranting further study into using adaptive RT planning.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/diagnóstico por imagem , Glioblastoma/radioterapia , Glioblastoma/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Planejamento da Radioterapia Assistida por Computador
4.
Tomography ; 9(1): 362-374, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36828381

RESUMO

Glioblastoma (GBM) is a fatal disease, with poor prognosis exacerbated by difficulty in assessing tumor extent with imaging. Spectroscopic MRI (sMRI) is a non-contrast imaging technique measuring endogenous metabolite levels of the brain that can serve as biomarkers for tumor extension. We completed a three-site study to assess survival benefits of GBM patients when treated with escalated radiation dose guided by metabolic abnormalities in sMRI. Escalated radiation led to complex post-treatment imaging, requiring unique approaches to discern tumor progression from radiation-related treatment effect through our quantitative imaging platform. The purpose of this study is to determine true tumor recurrence timepoints for patients in our dose-escalation multisite study using novel methodology and to report on median progression-free survival (PFS). Follow-up imaging for all 30 trial patients were collected, lesion volumes segmented and graphed, and imaging uploaded to our platform for visual interpretation. Eighteen months post-enrollment, the median PFS was 16.6 months with a median time to follow-up of 20.3 months. With this new treatment paradigm, incidence rate of tumor recurrence one year from treatment is 30% compared to 60-70% failure under standard care. Based on the delayed tumor progression and improved survival, a randomized phase II trial is under development (EAF211).


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Recidiva Local de Neoplasia , Doses de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA