Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35163363

RESUMO

The blue-green alga Spirulina platensis is rich in phycocyanins, that exhibit a wide range of pharmacological actions. C-phycocyanin (C-PC), in particular, possesses hepatoprotective, nephroprotective, antioxidant, and anticancer effects. Furthermore, several studies have reported both anti- and proinflammatory properties of this pigment. However, the precise mechanism(s) of action of C-PC in these processes remain largely unknown. Therefore, here we explored the C-PC effect in in vitro microglia activation. The effect of C-PC on the expression and release of IL-1ß and TNF-α and the activation of NF-κB was examined in primary microglia by real-time PCR, ELISA, and immunofluorescence. Treatment with C-PC up-regulated the expression and release of IL-1ß and TNF-α. C-PC also promoted the nuclear translocation of the NF-κB transcription factor. Then, to elucidate the molecular mechanisms for the immunoregulatory function of C-PC, we focused on investigating the role of Toll-like receptor 4 (TLR4). Accordingly, several TLR4 inhibitors have been used. Curcumin, ciprofloxacin, L48H37, and CLI-095 that suppresses specifically TLR4 signaling, blocked IL-1ß and TNF-α. Overall, these results indicate the immunomodulatory effect of C-PC in microglia cultures and show for the first time that the molecular mechanism implicated in this effect may involve TLR4 activation.


Assuntos
Agentes de Imunomodulação/farmacologia , Microglia/citologia , Ficocianina/farmacologia , Spirulina/química , Receptor 4 Toll-Like/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ciprofloxacina/farmacologia , Curcumina/farmacologia , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Microglia/efeitos dos fármacos , Microglia/imunologia , Cultura Primária de Células , Ratos , Sulfonamidas/farmacologia , Receptor 4 Toll-Like/antagonistas & inibidores , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
2.
J Neuroinflammation ; 16(1): 126, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31221190

RESUMO

BACKGROUND: Persistent and/or recurrent inflammatory processes are the main factor leading to multiple sclerosis (MS) lesions. The composite ultramicronized palmitoylethanolamide, an endogenous N-acylethanolamine, combined with the flavonoid luteolin, PEALut, have been found to exert neuroprotective activities in experimental models of spinal and brain injury and Alzheimer disease, as well as a clinical improvement in human stroke patients. Furthermore, PEALut enhances the expression of different myelin proteins in oligodendrocyte progenitor cells suggesting that this composite might have protective effects in MS experimental models. METHODS: The mouse model of experimental autoimmune encephalomyelitis (EAE) based on active immunization with a fragment of myelin oligodendrocyte glycoprotein (MOG35-55) was used. The daily assessment of clinical score and the expression of serum amyloid A (SAA1), proinflammatory cytokines TNF-α, IL-1ß, IFN-γ, and NLRP3 inflammasome, as well as TLR2, Fpr2, CD137, CD3-γ, and TCR-ζ chain, heterodimers that form T cell surface glycoprotein (TCR), and cannabinoid receptors CB1, CB2, and MBP, were evaluated in the brainstem and cerebellum at different postimmunization days (PIDs). RESULTS: Vehicle-MOG35-55-immunized (MOG35-55) mice developed ascending paralysis which peaked several days later and persisted until the end of the experiment. PEALut, given intraperitoneally daily starting on day 11 post-immunization, dose-dependently improved clinical score over the range 0.1-5 mg/kg. The mRNA expression of SAA1, TNF-α, IL-1ß, IFN-γ, and NLRP3 were significantly increased in MOG35-55 mice at 14 PID. In MOG35-55 mice treated with 5 mg /kg PEALut, the increase of SAA1, TNF- α, IL-1ß, and IFN-γ transcripts at 14 PID was statistically downregulated as compared to vehicle-MOG35-55 mice (p < 0.05). The expression of TLR2, Fpr2, CD137, CD3-γ, TCR-ζ chain, and CB2 receptors showed a significant upregulation in vehicle-MOG35-55 mice at 14 PID. Instead, CB1 and MBP transcripts have not changed in expression at any time. In MOG/PEALut-treated mice, TLR2, Fpr2, CD137, CD3-γ, TCR-ζ chain, and CB2 mRNAs were significantly downregulated as compared to vehicle MOG35-55 mice. CONCLUSIONS: The present results demonstrate that the intraperitoneal administration of the composite PEALut significantly reduces the development of clinical signs in the MOG35-55 model of EAE. The dose-dependent improvement of clinical score induced by PEALut was associated with a reduction in transcript expression of the acute-phase protein SAA1, TNF-α, IL-1ß, IFN-γ, and NLRP3 proinflammatory proteins and TLR2, Fpr2, CD137, CD3-γ, TCR-ζ chain, and CB2 receptors.


Assuntos
Encefalomielite Autoimune Experimental/patologia , Etanolaminas/farmacologia , Luteolina/farmacologia , Fármacos Neuroprotetores/farmacologia , Ácidos Palmíticos/farmacologia , Amidas , Animais , Biomarcadores/análise , Citocinas/efeitos dos fármacos , Citocinas/imunologia , Encefalomielite Autoimune Experimental/imunologia , Inflamação/imunologia , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL
3.
J Neuroinflammation ; 16(1): 148, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31319868

RESUMO

BACKGROUND: Neuroinflammation is the response of the central nervous system to events that interfere with tissue homeostasis and represents a common denominator in virtually all neurological diseases. Activation of microglia, the principal immune effector cells of the brain, contributes to neuronal injury by release of neurotoxic products. Toll-like receptor 4 (TLR4), expressed on the surface of microglia, plays an important role in mediating lipopolysaccharide (LPS)-induced microglia activation and inflammatory responses. We have previously shown that curcumin and some of its analogues harboring an α,ß-unsaturated 1,3-diketone moiety, able to coordinate the magnesium ion, can interfere with LPS-mediated TLR4-myeloid differentiation protein-2 (MD-2) signaling. Fluoroquinolone (FQ) antibiotics are compounds that contain a keto-carbonyl group that binds divalent ions, including magnesium. In addition to their antimicrobial activity, FQs are endowed with immunomodulatory properties, but the mechanism underlying their anti-inflammatory activity remains to be defined. The aim of the current study was to elucidate the molecular mechanism of these compounds in the TLR4/NF-κB inflammatory signaling pathway. METHODS: The putative binding mode of five FQs [ciprofloxacin (CPFX), levofloxacin (LVFX), moxifloxacin, ofloxacin, and delafloxacin] to TLR4-MD-2 was determined using molecular docking simulations. The effect of CPFX and LVFX on LPS-induced release of IL-1ß and TNF-α and NF-κB activation was investigated in primary microglia by ELISA and fluorescence staining. The interaction of CPFX and LVFX with TLR4-MD-2 complex was assessed by immunoprecipitation followed by Western blotting using Ba/F3 cells. RESULTS: CPFX and LVFX bound to the hydrophobic region of the MD-2 pocket and inhibited LPS-induced secretion of pro-inflammatory cytokines and activation of NF-κB in primary microglia. Furthermore, these FQs diminished the binding of LPS to TLR4-MD-2 complex and decreased the resulting TLR4-MD-2 dimerization in Ba/F3 cells. CONCLUSIONS: These results provide new insight into the mechanism of the anti-inflammatory activity of CPFX and LVFX, which involves, at least in part, the activation of TLR4/NF-κB signaling pathway. Our findings might facilitate the development of new molecules directed at the TLR4-MD-2 complex, a potential key target for controlling neuroinflammation.


Assuntos
Ciprofloxacina/farmacologia , Inflamação/imunologia , Levofloxacino/farmacologia , Microglia/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Humanos , Inflamação/metabolismo , Camundongos , Microglia/imunologia , NF-kappa B/efeitos dos fármacos , NF-kappa B/imunologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/imunologia
4.
J Neuroinflammation ; 15(1): 164, 2018 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-29803222

RESUMO

BACKGROUND: Acute-phase response is a systemic reaction to environmental/inflammatory insults and involves production of acute-phase proteins, including serum amyloid A (SAA). Interleukin-1ß (IL-1ß), a master regulator of neuroinflammation produced by activated inflammatory cells of the myeloid lineage, in particular microglia, plays a key role in the pathogenesis of acute and chronic diseases of the peripheral nervous system and CNS. IL-1ß release is promoted by ATP acting at the purinergic P2X7 receptor (P2X7R) in cells primed with toll-like receptor (TLR) ligands. METHODS: Purified (> 99%) microglia cultured from neonatal rat cortex and cerebellum were first primed with the putative TLR4/TLR2 agonist SAA (recombinant human Apo-SAA) or the established TLR4 agonist lipopolysaccharide (LPS) followed by addition of ATP. Expression of genes for the NLRP3 inflammasome, IL-1ß, tumor necrosis factor-α (TNF-α), and SAA1 was measured by quantitative real-time polymerase chain reaction (q-PCR). Intracellular and extracellular amounts of IL-1ß were determined by ELISA. RESULTS: Apo-SAA stimulated, in a time-dependent manner, the expression of NLRP3, IL-1ß, and TNF-α in cortical microglia, and produced a concentration-dependent increase in the intracellular content of IL-1ß in these cells. A 2-h 'priming' of the microglia with Apo-SAA followed by addition of ATP for 1 h, resulting in a robust release of IL-1ß into the culture medium, with a concomitant reduction in its intracellular content. The selective P2X7R antagonist A740003 blocked ATP-dependent release of IL-1ß. Microglia prepared from rat cerebellum displayed similar behaviors. As with LPS, Apo-SAA upregulated SAA1 and TLR2 mRNA, and downregulated that of TLR4. LPS was less efficacious than Apo-SAA, perhaps reflecting an action of the latter at TLR4 and TLR2. The TLR4 antagonist CLI-095 fully blocked the action of LPS, but only partially that of Apo-SAA. Although the TLR2 antagonist CU-CPT22 was inactive against Apo-SAA, it also failed to block the TLR2 agonist Pam3CSK4. CONCLUSIONS: Microglia are central to the inflammatory process and a major source of IL-1ß when activated. P2X7R-triggered IL-1ß maturation and export is thus likely to represent an important contributor to this cytokine pool. Given that SAA is detected in Alzheimer disease and multiple sclerosis brain, together with IL-1ß-immunopositive microglia, these findings propose a link between P2X7R, SAA, and IL-1ß in CNS pathophysiology.


Assuntos
Trifosfato de Adenosina/farmacologia , Interleucina-1beta/metabolismo , Microglia/efeitos dos fármacos , Proteína Amiloide A Sérica/farmacologia , Animais , Animais Recém-Nascidos , Encéfalo/citologia , Células Cultivadas , Interleucina-1beta/genética , Lipopolissacarídeos/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , RNA Mensageiro/metabolismo , Ratos , Fatores de Tempo
5.
Mediators Inflamm ; 2018: 2868702, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29576743

RESUMO

Several studies suggest that curcumin and related compounds possess antioxidant and anti-inflammatory properties including modulation of lipopolysaccharide- (LPS-) mediated signalling in macrophage cell models. We here investigated the effects of curcumin and the two structurally unrelated analogues GG6 and GG9 in primary human blood-derived macrophages as well as the signalling pathways involved. Macrophages differentiated from peripheral blood monocytes for 7 days were activated with LPS or selective Toll-like receptor agonists for 24 h. The effects of test compounds on cytokine production and immunophenotypes evaluated as CD80+/CCR2+ and CD206+/CD163+ subsets were examined by ELISA and flow cytometry. Signalling pathways were probed by Western blot. Curcumin (2.5-10 µM) failed to suppress LPS-induced inflammatory responses. While GG6 reduced LPS-induced IκB-α degradation and showed a trend towards reduced interleukin-1ß release, GG9 prevented the increase in proinflammatory CD80+ macrophage subset, downregulation of the anti-inflammatory CD206+/CD163+ subset, increase in p38 phosphorylation, and increase in cell-bound and secreted interleukin-1ß stimulated by LPS, at least in part through signalling pathways not involving Toll-like receptor 4 and nuclear factor-κB. Thus, the curcumin analogue GG9 attenuated the LPS-induced inflammatory response in human blood-derived macrophages and may therefore represent an attractive chemical template for macrophage pharmacological targeting.


Assuntos
Curcumina/análogos & derivados , Lipopolissacarídeos/farmacologia , Western Blotting , Células Cultivadas , Curcumina/química , Curcumina/farmacologia , Diarileptanoides , Humanos , Imunofenotipagem , Interleucina-1beta/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
J Neuroinflammation ; 12: 244, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26714634

RESUMO

BACKGROUND: Toll-like receptor (TLR) activation on microglia and astrocytes are key elements in neuroinflammation which accompanies a number of neurological disorders. While TLR activation on glia is well-established to up-regulate pro-inflammatory mediator expression, much less is known about how ligand engagement of one TLR may affect expression of other TLRs on microglia and astrocytes. METHODS: In the present study, we evaluated the effects of agonists for TLR2 (zymosan), TLR3 (polyinosinic-polycytidylic acid (poly(I:C)), a synthetic analogue of double-stranded RNA) and TLR4 (lipopolysaccaride (LPS)) in influencing expression of their cognate receptor as well as that of the other TLRs in cultures of rat cortical purified microglia (>99.5 %) and nominally microglia-free astrocytes. Elimination of residual microglia (a common contaminant of astrocyte cultures) was achieved by incubation with the lysosomotropic agent L-leucyl-L-leucine methyl ester (L-LME). RESULTS: Flow cytometric analysis confirmed the purity (essentially 100 %) of the obtained microglia, and up to 5 % microglia contamination of astrocytes. L-LME treatment effectively removed microglia from the latter (real-time polymerase chain reaction). The three TLR ligands robustly up-regulated gene expression for pro-inflammatory markers (interleukin-1 and interleukin-6, tumor necrosis factor) in microglia and enriched, but not purified, astrocytes, confirming cellular functionality. LPS, zymosan and poly(I:C) all down-regulated TLR4 messenger RNA (mRNA) and up-regulated TLR2 mRNA at 6 and 24 h. In spite of their inability to elaborate pro-inflammatory mediator output, the nominally microglia-free astrocytes (>99 % purity) also showed similar behaviours to those of microglia, as well as changes in TLR3 gene expression. LPS interaction with TLR4 activates downstream mitogen-activated protein kinase and nuclear factor-κB signalling pathways and subsequently causes inflammatory mediator production. The effects of LPS on TLR2 mRNA in both cell populations were antagonized by a nuclear factor-κB inhibitor. CONCLUSIONS: TLR2 and TLR4 activation in particular, in concert with microglia and astrocytes, comprise key elements in the initiation and maintenance of neuropathic pain. The finding that both homologous (zymosan) and heterologous (LPS, poly(I:C)) TLR ligands are capable of regulating TLR2 gene expression, in particular, may have important implications in understanding the relative contributions of different TLRs in neurological disorders associated with neuroinflammation.


Assuntos
Astrócitos/metabolismo , Córtex Cerebral/metabolismo , Microglia/metabolismo , Receptores Toll-Like/biossíntese , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Técnicas de Cocultura , Regulação da Expressão Gênica , Ligantes , Microglia/efeitos dos fármacos , Poli I-C/metabolismo , Poli I-C/farmacologia , Ratos , Receptores Toll-Like/agonistas , Zimosan/metabolismo , Zimosan/farmacologia
7.
Eur J Clin Pharmacol ; 71(5): 529-39, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25740678

RESUMO

PURPOSE: Locally advanced rectal cancer is currently treated with pre-surgical radiotherapy and chemotherapy. Approximately one-half of patients obtain a relevant shrinkage/disappearance of tumour, with major clinical advantages. The remaining patients, in contrast, show no benefit and possibly need alternative treatment. To provide the best therapeutic option for each individual patient, predictive markers have been widely researched. This review was undertaken to evaluate recent progress made in this field. METHODS: A systematic literature search was performed using PubMed and Scopus database, focused on germ line gene polymorphisms as biomarkers and response and toxicity as outcomes. Because an exhaustive previous review was available describing findings up to 2008, we restricted our analysis to the last 5 years. RESULTS: Ten original research articles were found, reporting promising results for some candidate genes in drug metabolism (TYMS, MTHFR), DNA repair (XRCC1, OGG1, CCND1) and inflammation (SOD2, TGFB1)/immunity (IL13) pathways, but with no firm conclusion. All the studies had small sample size and were defined as exploratory. This review highlights pivotal molecular, clinical, genetic and statistical issues in the investigation of genetic polymorphisms as outcome predictors for rectal cancer and offers suggestions for future development. CONCLUSIONS: What emerges is a clear need for new proposals, especially in view of the increasing evidence for tumour-host and gene-gene interactions during anticancer treatment, together with stronger adherence to proper methodological requirements.


Assuntos
Biomarcadores Tumorais/genética , Mutação em Linhagem Germinativa , Polimorfismo de Nucleotídeo Único , Neoplasias Retais/genética , Neoplasias Retais/terapia , Quimiorradioterapia Adjuvante , Dano ao DNA/genética , Reparo do DNA/genética , Humanos , Terapia Neoadjuvante , Valor Preditivo dos Testes
8.
Inflammopharmacology ; 23(2-3): 127-30, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24862356

RESUMO

This is a reply to a recently published Commentary: "Palmitoylethanolamide: problems regarding micronization, ultra-micronization and additives" Inflammopharmacology DOI: 10.1007/s10787-014-0202-3 , written in relation to our review article: Skaper SD, Facci L, Fusco M, della Valle MF, Zusso M, Costa B, Giusti P (2014) "Palmitoylethanolamide, a naturally occurring disease-modifying agent in neuropathic pain" Inflammopharmacology 22:79-94 DOI: 10.1007/s10787-013-0191-7 . We believe that the Commentary by Kriek contains a number of erroneous statements and misinterpretations of the published scientific/medical literature which our reply shall elaborate on. Further, the writer of the Commentary has a direct connection to a company, JP Russell Science Ltd that sells palmitoylethanolamide. The take-home message of our review remains as originally stated: "Collectively, the findings presented here propose that palmitoylethanolamide merits further consideration as a disease-modifying agent for controlling inflammatory responses and related chronic and neuropathic pain".


Assuntos
Endocanabinoides/farmacologia , Endocanabinoides/uso terapêutico , Etanolaminas/farmacologia , Etanolaminas/uso terapêutico , Neuralgia/tratamento farmacológico , Ácidos Palmíticos/farmacologia , Ácidos Palmíticos/uso terapêutico , Animais , Humanos
9.
Immunology ; 141(3): 314-27, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24032675

RESUMO

Glia and microglia in particular elaborate pro-inflammatory molecules that play key roles in central nervous system (CNS) disorders from neuropathic pain and epilepsy to neurodegenerative diseases. Microglia respond also to pro-inflammatory signals released from other non-neuronal cells, mainly those of immune origin such as mast cells. The latter are found in most tissues, are CNS resident, and traverse the blood-spinal cord and blood-brain barriers when barrier compromise results from CNS pathology. Growing evidence of mast cell-glia communication opens new perspectives for the development of therapies targeting neuroinflammation by differentially modulating activation of non-neuronal cells that normally control neuronal sensitization - both peripherally and centrally. Mast cells and glia possess endogenous homeostatic mechanisms/molecules that can be up-regulated as a result of tissue damage or stimulation of inflammatory responses. Such molecules include the N-acylethanolamine family. One such member, N-palmitoylethanolamine is proposed to have a key role in maintenance of cellular homeostasis in the face of external stressors provoking, for example, inflammation. N-Palmitoylethanolamine has proven efficacious in mast-cell-mediated experimental models of acute and neurogenic inflammation. This review will provide an overview of recent progress relating to the pathobiology of neuroinflammation, the role of microglia, neuroimmune interactions involving mast cells and the possibility that mast cell-microglia cross-talk contributes to the exacerbation of acute symptoms of chronic neurodegenerative disease and accelerates disease progression, as well as promoting pain transmission pathways. We will conclude by considering the therapeutic potential of treating systemic inflammation or blockade of signalling pathways from the periphery to the brain in such settings.


Assuntos
Encéfalo/imunologia , Comunicação Celular , Encefalite/imunologia , Mastócitos/imunologia , Doenças Neurodegenerativas/imunologia , Neuroglia/imunologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Encefalite/metabolismo , Encefalite/patologia , Encefalite/terapia , Humanos , Mediadores da Inflamação/metabolismo , Mastócitos/metabolismo , Mastócitos/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/terapia , Neuroglia/metabolismo , Neuroglia/patologia , Transdução de Sinais
10.
Inflammopharmacology ; 22(2): 79-94, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24178954

RESUMO

Persistent pain affects nearly half of all people seeking medical care in the US alone, and accounts for at least $80 billion worth of lost productivity each year. Among all types of chronic pain, neuropathic pain stands out: this is pain resulting from damage or disease of the somatosensory nervous system, and remains largely untreatable. With few available treatment options, neuropathic pain represents an area of significant and growing unmet medical need. Current treatment of peripheral neuropathic pain involves several drug classes, including opioids, gabapentinoids, antidepressants, antiepileptic drugs, local anesthetics and capsaicin. Even so, less than half of patients achieve partial relief. This review discusses a novel approach to neuropathic pain management, based on knowledge of: the role of glia and mast cells in pain and neuroinflammation; the body's innate mechanisms to maintain cellular homeostasis when faced with external stressors provoking, for example, inflammation. The discovery that palmitoylethanolamide, a member of the N-acylethanolamine family which is produced from the lipid bilayer on-demand, is capable of exerting anti-allodynic and anti-hyperalgesic effects by down-modulating both microglial and mast cell activity has led to the application of this fatty acid amide in several clinical studies of neuropathic pain, with beneficial outcome and no indication of adverse effects at pharmacological doses. Collectively, the findings presented here propose that palmitoylethanolamide merits further consideration as a disease-modifying agent for controlling inflammatory responses and related chronic and neuropathic pain.


Assuntos
Endocanabinoides/farmacologia , Endocanabinoides/uso terapêutico , Etanolaminas/farmacologia , Etanolaminas/uso terapêutico , Neuralgia/tratamento farmacológico , Ácidos Palmíticos/farmacologia , Ácidos Palmíticos/uso terapêutico , Amidas , Animais , Humanos , Inflamação/tratamento farmacológico , Mastócitos/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Manejo da Dor/métodos
11.
FASEB J ; 26(8): 3103-17, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22516295

RESUMO

One of the more important recent advances in neuroscience research is the understanding that there is extensive communication between the immune system and the central nervous system (CNS). Proinflammatory cytokines play a key role in this communication. The emerging realization is that glia and microglia, in particular, (which are the brain's resident macrophages), constitute an important source of inflammatory mediators and may have fundamental roles in CNS disorders from neuropathic pain and epilepsy to neurodegenerative diseases. Microglia respond also to proinflammatory signals released from other non-neuronal cells, principally those of immune origin. Mast cells are of particular relevance in this context. These immunity-related cells, while resident in the CNS, are capable of migrating across the blood-spinal cord and blood-brain barriers in situations where the barrier is compromised as a result of CNS pathology. Emerging evidence suggests the possibility of mast cell-glia communications and opens exciting new perspectives for designing therapies to target neuroinflammation by differentially modulating the activation of non-neuronal cells normally controlling neuronal sensitization, both peripherally and centrally. This review aims to provide an overview of recent progress relating to the pathobiology of neuroinflammation, the role of microglia, neuroimmune interactions involving mast cells, in particular, and the possibility that mast cell-microglia crosstalk may contribute to the exacerbation of acute symptoms of chronic neurodegenerative disease and accelerate disease progression, as well as promote pain transmission pathways. We conclude by considering the therapeutic potential of treating systemic inflammation or blockade of signaling pathways from the periphery to the brain in such settings.


Assuntos
Mediadores da Inflamação/metabolismo , Inflamação/fisiopatologia , Mastócitos/fisiologia , Microglia/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Sistema Nervoso Central/patologia , Humanos , Imunidade Inata/fisiologia , Inflamação/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Neuroglia/fisiologia , Dor/fisiopatologia , Receptores Purinérgicos/fisiologia , Medula Espinal/fisiopatologia
12.
Neurochem Res ; 38(9): 1801-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23743620

RESUMO

Microglia can exacerbate central nervous system disorders, including stroke and chronic progressive neurodegenerative diseases such as Alzheimer disease. Mounting evidence points to ion channels expressed by microglia as contributing to these neuropathologies. The Chloride Intracellular Channel (CLIC) family represents a class of chloride intracellular channel proteins, most of which are localized to intracellular membranes. CLICs are unusual in that they possess both soluble and integral membrane forms. Amyloid ß-peptide (Aß) accumulation in plaques is a hallmark of familial Alzheimer disease. The truncated Aß25-35 species was shown previously to increase the expression of CLIC1 chloride conductance in cortical microglia and to provoke microglial neurotoxicity. However, the highly pathogenic and fibrillogenic full-length Aß1-42 species was not examined, nor was the potential role of CLIC1 in mediating microglial activation and neurotoxicity by other stimuli (e.g. ligands for the Toll-like receptors). In the present study, we utilized a two chamber Transwell™ cell culture system to allow separate treatment of microglia and neurons while examining the effect of pharmacological blockade of CLIC1 in protecting cortical neurons from toxicity caused by Aß1-42- and lipopolysaccaride-stimulated microglia. Presentation of Aß1-42 to the upper, microglia-containing chamber resulted in a progressive loss of neurons over 3 days. Neuronal cell injury was prevented by the CLIC1 ion channel blockers IAA-94 [(R(+)-[(6,7-dichloro-2-cyclopentyl-2,3-dihydro-2-methyl-1-oxo-1H-inden-5yl)-oxy] acetic acid)] and niflumic acid (2-{[3-(trifluoromethyl)phenyl]amino}nicotinic acid) when presented to the upper chamber only. Incubation of microglia with lipopolysaccharide plus interferon-γ led to neuronal cell injury which, however, was insensitive to inhibition by the CLIC1 channel blockers, suggesting a degree of selectivity in agents leading to CLIC1 activation.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Canais de Cloreto/fisiologia , Microglia/fisiologia , Fragmentos de Peptídeos/toxicidade , Animais , Células Cultivadas , Ratos
13.
Life Sci ; 335: 122242, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37952834

RESUMO

AIM: 2-Pentadecyl-2-oxazoline (PEA-OXA), the oxazoline derivative of N-palmitoylethanolamine, exerts anti-inflammatory activity; however, very little is known about the molecular mechanisms underlying this effect. Here, we tested the anti-neuroinflammatory effect of PEA-OXA in primary microglia and we also investigated the possible interaction of the molecule with the Toll-like receptor 4 (TLR4)-myeloid differentiation protein-2 (MD-2) complex. MAIN METHODS: The anti-inflammatory effect of PEA-OXA was analyzed by measuring the expression and release of pro-inflammatory mediators in primary microglia by real-time PCR and ELISA, respectively. The effect of PEA-OXA on the activation of TLR4 signaling was assessed using two stably TLR4-transfected cell lines (i.e., HEK-293 and Ba/F3 cells). Finally, the putative binding mode of PEA-OXA to TLR4-MD-2 was investigated by molecular docking simulations. KEY FINDINGS: Treatment with PEA-OXA resulted in the following effects: (i) it down-regulated gene expression of several pro-inflammatory molecules and the secretion of pro-inflammatory cytokines in LPS stimulated microglia cells; (ii) it did not prevent microglia activation after stimulation with TLR2 ligands; (iii) it prevented TLR4/NF-κB activation triggered by LPS in HEK-Blue™ hTLR4 cells; and (iv) it interfered with the binding of LPS to TLR4-MD-2 complex. Furthermore, molecular docking studies suggested that PEA-OXA could bind MD-2 with a 1:3 (MD-2/PEA-OXA) stoichiometry. CONCLUSION: We show for the first time that the anti-neuroinflammatory effect of PEA-OXA involves its activity against TLR4 signaling, making this molecule a valuable tool for the development of new compounds directed to control neuroinflammation via inhibiting TLR4 signaling.


Assuntos
Inflamação , Lipopolissacarídeos , Humanos , Lipopolissacarídeos/efeitos adversos , Inflamação/metabolismo , Receptor 4 Toll-Like/metabolismo , Simulação de Acoplamento Molecular , Microglia/metabolismo , Células HEK293 , Anti-Inflamatórios/farmacologia , NF-kappa B/metabolismo
14.
Int J Neuropsychopharmacol ; 14(10): 1341-55, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21320392

RESUMO

Increasing evidence suggests that specific physiological measures may serve as biomarkers for successful treatment to alleviate symptoms of pathological anxiety. Studies of autonomic function investigating parameters such as heart rate (HR), HR variability and blood pressure (BP) indicated that HR variability is consistently reduced in anxious patients, whereas HR and BP data show inconsistent results. Therefore, HR and HR variability were measured under various emotionally challenging conditions in a mouse model of high innate anxiety (high anxiety behaviour; HAB) vs. control normal anxiety-like behaviour (NAB) mice. Baseline HR, HR variability and activity did not differ between mouse lines. However, after cued Pavlovian fear conditioning, both elevated tachycardia and increased fear responses were observed in HAB mice compared to NAB mice upon re-exposure to the conditioning stimulus serving as the emotional stressor. When retention of conditioned fear was tested in the home cage, HAB mice again displayed higher fear responses than NAB mice, while the HR responses were similar. Conversely, in both experimental settings HAB mice consistently exhibited reduced HR variability. Repeated administration of the anxiolytic NK1 receptor antagonist L-822429 lowered the conditioned fear response and shifted HR dynamics in HAB mice to a more regular pattern, similar to that in NAB mice. Additional receiver-operating characteristic (ROC) analysis demonstrated the high specificity and sensitivity of HR variability to distinguish between normal and high anxiety trait. These findings indicate that assessment of autonomic response in addition to freezing might be a useful indicator of the efficacy of novel anxiolytic treatments.


Assuntos
Ansiolíticos/farmacologia , Ansiedade/tratamento farmacológico , Sistema Nervoso Autônomo/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Coração/inervação , Piperidinas/farmacologia , Taquicardia/tratamento farmacológico , Animais , Ansiedade/etiologia , Ansiedade/fisiopatologia , Ansiedade/psicologia , Sistema Nervoso Autônomo/fisiopatologia , Ritmo Circadiano , Condicionamento Psicológico/efeitos dos fármacos , Sinais (Psicologia) , Modelos Animais de Doenças , Eletrocardiografia Ambulatorial , Eletrochoque , Medo/efeitos dos fármacos , Feminino , Camundongos , Atividade Motora/efeitos dos fármacos , Antagonistas dos Receptores de Neurocinina-1 , Ruído , Curva ROC , Taquicardia/etiologia , Taquicardia/fisiopatologia , Taquicardia/psicologia , Telemetria , Fatores de Tempo , Gravação em Vídeo
15.
FASEB J ; 24(2): 337-45, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19812374

RESUMO

Purine nucleotides are well established as extracellular signaling molecules. P2X receptors are ATP-gated cation channels that mediate fast excitatory transmission in diverse regions of the brain and spinal cord. Several P2X receptor subtypes, including P2X(7), have the unusual property of changing their ion selectivity during prolonged exposure to ATP, which results in progressive dilation of the channel pore and the development of permeability to molecules as large as 900 Da. The P2X(7) receptor was originally described in cells of hematopoietic origin, including macrophages, microglia, and certain lymphocytes, and mediates the influx of Ca(2+) and Na(+) ions, as well as the release of proinflammatory cytokines. P2X(7) receptors may affect neuronal cell death through their ability to regulate the processing and release of interleukin-1beta, a key mediator in neurodegeneration, chronic inflammation, and chronic pain. Activation of P2X(7) receptors provides an inflammatory stimulus, and P2X(7) receptor-deficient mice have substantially attenuated inflammatory responses, including models of neuropathic and chronic inflammatory pain. Moreover, P2X(7) receptor activity, by regulating the release of proinflammatory cytokines, may be involved in the pathophysiology of depression. The P2X(7) receptor may thus represent a critical communication link between the nervous and immune systems, while providing a target for therapeutic exploitation. This review discusses the current biology and cellular signaling pathways of P2X(7) receptor function, as well as insights into the role for this receptor in neurological/psychiatric diseases, outstanding questions, and the therapeutic potential of P2X(7) receptor antagonism.


Assuntos
Receptores Purinérgicos P2/fisiologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Trifosfato de Adenosina/fisiologia , Animais , Citocinas/fisiologia , Depressão/etiologia , Depressão/fisiopatologia , Humanos , Camundongos , Doenças do Sistema Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Dor/fisiopatologia , Ratos , Receptores Purinérgicos P2X7 , Transdução de Sinais/fisiologia
16.
Front Pharmacol ; 12: 698133, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276381

RESUMO

Remyelination in patients with multiple sclerosis frequently fails, especially in the chronic phase of the disease promoting axonal and neuronal degeneration and progressive disease disability. Drug-based therapies able to promote endogenous remyelination capability of oligodendrocytes are thus emerging as primary approaches to multiple sclerosis. We have recently reported that the co-ultramicronized composite of palmitoylethanolamide and the flavonoid luteolin (PEALut) promotes oligodendrocyte precursor cell (OPC) maturation without affecting proliferation. Since TAM receptor signaling has been reported to be important modulator of oligodendrocyte survival, we here evaluated the eventual involvement of TAM receptors in PEALut-induced OPC maturation. The mRNAs related to TAM receptors -Tyro3, Axl, and Mertk- were all present at day 2 in vitro. However, while Tyro3 gene expression significantly increased upon cell differentiation, Axl and Mertk did not change during the first week in vitro. Tyro3 gene expression developmental pattern resembled that of MBP myelin protein. In OPCs treated with PEALut the developmental increase of Tyro3 mRNA was significantly higher as compared to vehicle while was reduced gene expression related to Axl and Mertk. Rapamycin, an inhibitor of mTOR, prevented oligodendrocyte growth differentiation and myelination. PEALut, administered to the cultures 30 min after rapamycin, prevented the alteration of mRNA basal expression of the TAM receptors as well as the expression of myelin proteins MBP and CNPase. Altogether, data obtained confirm that PEALut promotes oligodendrocyte differentiation as shown by the increase of MBP and CNPase and Tyro3 mRNAs as well as CNPase and Tyro3 immunostainings. The finding that these effects are reduced when OPCs are exposed to rapamycin suggests an involvement of mTOR signaling in PEALut effects.

17.
Mol Neurobiol ; 58(7): 3515-3528, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33745115

RESUMO

Activation of microglia results in the increased production and release of a series of inflammatory and neurotoxic mediators, which play essential roles in structural and functional neuronal damage and in the development and progression of a number of neurodegenerative diseases. The microalga Euglena gracilis (Euglena), rich in vitamins, minerals, and other nutrients, has gained increasing attention due to its antimicrobial, anti-viral, antitumor, and anti-inflammatory activities. In particular, anti-inflammatory properties of Euglena could exert neuroprotective functions in different neurodegenerative diseases related to inflammation. However, the mechanisms underlying the anti-inflammatory effect of Euglena are not fully understood. In this study, we investigated whether Euglena could attenuate microglia activation and we also studied the mechanism of its anti-inflammatory activity. Our results showed that non-cytotoxic concentrations of a Euglena acetone extract (EAE) downregulated the mRNA expression levels and release of pro-inflammatory mediators, including NO, IL-1ß, and TNF-α in LPS-stimulated microglia. EAE also significantly blocked the LPS-induced nuclear translocation of NF-κB p65 subunit and increased the mRNA expression of nuclear factor erythroid 2-related factor (Nrf2) and heme oxygenase-1 (HO-1). Furthermore, the release of pro-inflammatory mediators and NF-κB activation were also blocked by EAE in the presence of ML385, a specific Nrf2 inhibitor. Together, these results show that EAE overcomes LPS-induced microglia pro-inflammatory responses through downregulation of NF-κB and activation of Nrf2 signaling pathways, although the two pathways seem to get involved in an independent manner.


Assuntos
Anti-Inflamatórios/isolamento & purificação , Carotenoides/isolamento & purificação , Euglena gracilis/isolamento & purificação , Microglia/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Carotenoides/farmacologia , Células Cultivadas , Feminino , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Masculino , Microglia/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
18.
Front Pharmacol ; 12: 724993, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566649

RESUMO

Background: Uncontrolled neuroinflammation and microglia activation lead to cellular and tissue damage contributing to neurodegenerative and neurological disorders. Spirulina (Arthrospira platensis (Nordstedt) Gomont, or Spirulina platensis), a blue-green microalga, which belongs to the class of cyanobacteria, has been studied for its numerous health benefits, which include anti-inflammatory properties, among others. Furthermore, in vivo studies have highlighted neuroprotective effects of Spirulina from neuroinflammatory insults in different brain areas. However, the mechanisms underlying the anti-inflammatory effect of the microalga are not completely understood. In this study we examined the effect of pre- and post-treatment with an acetone extract of Spirulina (E1) in an in vitro model of LPS-induced microglia activation. Methods: The effect of E1 on the release of IL-1ß and TNF-α, expression of iNOS, nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1), and the activation of NF-κB was investigated in primary microglia by ELISA, real-time PCR, and immunofluorescence. Results: Pre- and early post-treatment with non-cytotoxic concentrations of E1 down-regulated the release of IL-1ß and TNF-α, and the over-expression of iNOS induced by LPS. E1 also significantly blocked the LPS-induced nuclear translocation of NF-κB p65 subunit, and upregulated gene and protein levels of Nrf2, as well as gene expression of HO-1. Conclusions: These results indicate that the extract of Spirulina can be useful in the control of microglia activation and neuroinflammatory processes. This evidence can support future in vivo studies to test pre- and post-treatment effects of the acetone extract from Spirulina.

19.
Pharmaceutics ; 12(1)2019 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-31877761

RESUMO

The holistic approach of personalized medicine, merging clinical and molecular characteristics to tailor the diagnostic and therapeutic path to each individual, is steadily spreading in clinical practice. Psychiatric disorders represent one of the most difficult diagnostic challenges, given their frequent mixed nature and intrinsic variability, as in bipolar disorders and depression. Patients misdiagnosed as depressed are often initially prescribed serotonergic antidepressants, a treatment that can exacerbate a previously unrecognized bipolar condition. Thanks to the use of the patient's genomic profile, it is possible to recognize such risk and at the same time characterize specific genetic assets specifically associated with bipolar spectrum disorder, as well as with the individual response to the various therapeutic options. This provides the basis for molecular diagnosis and the definition of pharmacogenomic profiles, thus guiding therapeutic choices and allowing a safer and more effective use of psychotropic drugs. Here, we report the pharmacogenomics state of the art in bipolar disorders and suggest an algorithm for therapeutic regimen choice.

20.
Front Cell Neurosci ; 13: 578, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32116551

RESUMO

[This corrects the article DOI: 10.3389/fncel.2018.00072.].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA