Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Nature ; 625(7995): 494-499, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38233619

RESUMO

Moiré superlattices based on van der Waals bilayers1-4 created at small twist angles lead to a long wavelength pattern with approximate translational symmetry. At large twist angles (θt), moiré patterns are, in general, incommensurate except for a few discrete angles. Here we show that large-angle twisted bilayers offer distinctly different platforms. More specifically, by using twisted tungsten diselenide bilayers, we create the incommensurate dodecagon quasicrystals at θt = 30° and the commensurate moiré crystals at θt = 21.8° and 38.2°. Valley-resolved scanning tunnelling spectroscopy shows disparate behaviours between moiré crystals (with translational symmetry) and quasicrystals (with broken translational symmetry). In particular, the K valley shows rich electronic structures exemplified by the formation of mini-gaps near the valence band maximum. These discoveries demonstrate that bilayers with large twist angles offer a design platform to explore moiré physics beyond those formed with small twist angles.

2.
Nature ; 617(7960): 282-286, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37100903

RESUMO

Peculiar electron-phonon interaction characteristics underpin the ultrahigh mobility1, electron hydrodynamics2-4, superconductivity5 and superfluidity6,7 observed in graphene heterostructures. The Lorenz ratio between the electronic thermal conductivity and the product of the electrical conductivity and temperature provides insight into electron-phonon interactions that is inaccessible to past graphene measurements. Here we show an unusual Lorenz ratio peak in degenerate graphene near 60 kelvin and decreased peak magnitude with increased mobility. When combined with ab initio calculations of the many-body electron-phonon self-energy and analytical models, this experimental observation reveals that broken reflection symmetry in graphene heterostructures can relax a restrictive selection rule8,9 to allow quasielastic electron coupling with an odd number of flexural phonons, contributing to the increase of the Lorenz ratio towards the Sommerfeld limit at an intermediate temperature sandwiched between the low-temperature hydrodynamic regime and the inelastic electron-phonon scattering regime above 120 kelvin. In contrast to past practices of neglecting the contributions of flexural phonons to transport in two-dimensional materials, this work suggests that tunable electron-flexural phonon couping can provide a handle to control quantum matter at the atomic scale, such as in magic-angle twisted bilayer graphene10 where low-energy excitations may mediate Cooper pairing of flat-band electrons11,12.

3.
Proc Natl Acad Sci U S A ; 121(21): e2318151121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38758696

RESUMO

Halide perovskites emerged as a revolutionary family of high-quality semiconductors for solar energy harvesting and energy-efficient lighting. There is mounting evidence that the exceptional optoelectronic properties of these materials could stem from unconventional electron-phonon couplings, and it has been suggested that the formation of polarons and self-trapped excitons could be key to understanding such properties. By performing first-principles simulations across the length scales, here we show that halide perovskites harbor a uniquely rich variety of polaronic species, including small polarons, large polarons, and charge density waves, and we explain a variety of experimental observations. We find that these emergent quasiparticles support topologically nontrivial phonon fields with quantized topological charge, making them nonmagnetic analog of the helical Bloch points found in magnetic skyrmion lattices.

4.
Phys Rev Lett ; 132(3): 036902, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38307080

RESUMO

Excitons consist of electrons and holes held together by their attractive Coulomb interaction. Although excitons are neutral excitations, spatial fluctuations in their charge density couple with the ions of the crystal lattice. This coupling can lower the exciton energy and lead to the formation of a localized excitonic polaron or even a self-trapped exciton in the presence of strong exciton-phonon interactions. Here, we develop a theoretical and computational approach to compute excitonic polarons and self-trapped excitons from first principles. Our methodology combines the many-body Bethe-Salpeter approach with density-functional perturbation theory and does not require explicit supercell calculations. As a proof of concept, we demonstrate our method for a compound of the halide perovskite family.

5.
Phys Rev Lett ; 129(24): 249901, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36563282

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.129.076402.

6.
Phys Rev Lett ; 129(7): 076402, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36018689

RESUMO

Ab initio calculations of the phonon-induced band structure renormalization are currently based on the perturbative Allen-Heine theory and its many-body generalizations. These approaches are unsuitable to describe materials where electrons form localized polarons. Here, we develop a self-consistent, many-body Green's function theory of band structure renormalization that incorporates localization and self-trapping. We show that the present approach reduces to the Allen-Heine theory in the weak-coupling limit, and to total energy calculations of self-trapped polarons in the strong-coupling limit. To demonstrate this methodology, we reproduce the path-integral results of Feynman and diagrammatic Monte Carlo calculations for the Fröhlich model at all couplings, and we calculate the zero point renormalization of the band gap of an ionic insulator including polaronic effects.

7.
Nat Mater ; 19(11): 1201-1206, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32839586

RESUMO

Understanding the electronic energy landscape in metal halide perovskites is essential for further improvements in their promising performance in thin-film photovoltaics. Here, we uncover the presence of above-bandgap oscillatory features in the absorption spectra of formamidinium lead triiodide thin films. We attribute these discrete features to intrinsically occurring quantum confinement effects, for which the related energies change with temperature according to the inverse square of the intrinsic lattice parameter, and with peak index in a quadratic manner. By determining the threshold film thickness at which the amplitude of the peaks is appreciably decreased, and through ab initio simulations of the absorption features, we estimate the length scale of confinement to be 10-20 nm. Such absorption peaks present a new and intriguing quantum electronic phenomenon in a nominally bulk semiconductor, offering intrinsic nanoscale optoelectronic properties without necessitating cumbersome additional processing steps.

8.
Phys Rev Lett ; 127(23): 237601, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34936783

RESUMO

The Rashba-Dresselhaus effect is the splitting of doubly degenerate band extrema in semiconductors, accompanied by the emergence of counterrotating spin textures and spin-momentum locking. Here we investigate how this effect is modified by lattice vibrations. We show that, in centrosymmetric nonmagnetic crystals, for which a bulk Rashba-Dresselhaus effect is symmetry-forbidden, electron-phonon interactions can induce a phonon-assisted, dynamic Rashba-Dresselhaus spin splitting in the presence of an out-of-equilibrium phonon population. In particular, we show how Rashba, Dresselhaus, or Weyl spin textures can selectively be established by driving coherent infrared-active phonons, and we perform ab initio calculations to quantify this effect for halide perovskites.

9.
Phys Rev Lett ; 127(20): 207401, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34860053

RESUMO

Inelastic scattering experiments are key methods for mapping the full dispersion of fundamental excitations of solids in the ground as well as nonequilibrium states. A quantitative analysis of inelastic scattering in terms of phonon excitations requires identifying the role of multiphonon processes. Here, we develop an efficient first-principles methodology for calculating the all-phonon quantum mechanical structure factor of solids. We demonstrate our method by obtaining excellent agreement between measurements and calculations of the diffuse scattering patterns of black phosphorus, showing that multiphonon processes play a substantial role. The present approach constitutes a step towards the interpretation of static and time-resolved electron, x-ray, and neutron inelastic scattering data.

10.
Proc Natl Acad Sci U S A ; 115(21): 5397-5402, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29735683

RESUMO

Perovskite minerals form an essential component of the Earth's mantle, and synthetic crystals are ubiquitous in electronics, photonics, and energy technology. The extraordinary chemical diversity of these crystals raises the question of how many and which perovskites are yet to be discovered. Here we show that the "no-rattling" principle postulated by Goldschmidt in 1926, describing the geometric conditions under which a perovskite can form, is much more effective than previously thought and allows us to predict perovskites with a fidelity of 80%. By supplementing this principle with inferential statistics and internet data mining we establish that currently known perovskites are only the tip of the iceberg, and we enumerate 90,000 hitherto-unknown compounds awaiting to be studied. Our results suggest that geometric blueprints may enable the systematic screening of millions of compounds and offer untapped opportunities in structure prediction and materials design.

11.
Nano Lett ; 20(12): 8861-8865, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33226824

RESUMO

The Hall scattering factor, r, is a key quantity for establishing carrier concentration and drift mobility from Hall measurements; in experiments, it is usually assumed to be 1. In this paper, we use a combination of analytical and ab initio modeling to determine r in graphene. Although at high carrier densities r ≈ 1 in a wide temperature range, at low doping the temperature dependence of r is very strong with values as high as 4 below 300 K. These high values are due to the linear bands around the Dirac cone and the carrier scattering rates due to acoustic phonons. At higher temperatures, r can instead become as low as 0.5 due to the contribution of both holes and electrons and the role of optical phonons. Finally, we provide a simple analytical model to compute accurately r in graphene in a wide range of temperatures and carrier densities.

12.
Rep Prog Phys ; 83(3): 036501, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31923906

RESUMO

One of the fundamental properties of semiconductors is their ability to support highly tunable electric currents in the presence of electric fields or carrier concentration gradients. These properties are described by transport coefficients such as electron and hole mobilities. Over the last decades, our understanding of carrier mobilities has largely been shaped by experimental investigations and empirical models. Recently, advances in electronic structure methods for real materials have made it possible to study these properties with predictive accuracy and without resorting to empirical parameters. These new developments are unlocking exciting new opportunities, from exploring carrier transport in quantum matter to in silico designing new semiconductors with tailored transport properties. In this article, we review the most recent developments in the area of ab initio calculations of carrier mobilities of semiconductors. Our aim is threefold: to make this rapidly-growing research area accessible to a broad community of condensed-matter theorists and materials scientists; to identify key challenges that need to be addressed in order to increase the predictive power of these methods; and to identify new opportunities for increasing the impact of these computational methods on the science and technology of advanced materials. The review is organized in three parts. In the first part, we offer a brief historical overview of approaches to the calculation of carrier mobilities, and we establish the conceptual framework underlying modern ab initio approaches. We summarize the Boltzmann theory of carrier transport and we discuss its scope of applicability, merits, and limitations in the broader context of many-body Green's function approaches. We discuss recent implementations of the Boltzmann formalism within the context of density functional theory and many-body perturbation theory calculations, placing an emphasis on the key computational challenges and suggested solutions. In the second part of the article, we review applications of these methods to materials of current interest, from three-dimensional semiconductors to layered and two-dimensional materials. In particular, we discuss in detail recent investigations of classic materials such as silicon, diamond, gallium arsenide, gallium nitride, gallium oxide, and lead halide perovskites as well as low-dimensional semiconductors such as graphene, silicene, phosphorene, molybdenum disulfide, and indium selenide. We also review recent efforts toward high-throughput calculations of carrier transport. In the last part, we identify important classes of materials for which an ab initio study of carrier mobilities is warranted. We discuss the extension of the methodology to study topological quantum matter and materials for spintronics and we comment on the possibility of incorporating Berry-phase effects and many-body correlations beyond the standard Boltzmann formalism.

13.
Nano Lett ; 19(3): 1774-1781, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30734566

RESUMO

Two-dimensional (2D) semiconductors are at the center of an intense research effort aimed at developing the next generation of flexible, transparent, and energy-efficient electronics. In these applications, the carrier mobility, that is the ability of electrons and holes to move rapidly in response to an external voltage, is a critical design parameter. Here, we show that the interlayer coupling between electronic wave functions in 2D semiconductors can be used to drastically alter carrier mobility and dynamics. We demonstrate this concept by performing state-of-the-art ab initio calculations for InSe, a prototypical 2D semiconductor that is attracting considerable attention, because of its exceptionally high electron mobility. We show that the electron mobility of InSe can be increased from 100 cm2 V-1 s-1 to 1000 cm2 V-1 s-1 by exploiting the dimensional crossover of the electronic density of states from two dimensions to three dimensions. By generalizing our results to the broader class of layered materials, we discover that dimensionality plays a universal role in the transport properties of 2D semiconductors.

14.
Phys Rev Lett ; 123(9): 096602, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31524479

RESUMO

A fundamental obstacle toward the realization of GaN p-channel transistors is its low hole mobility. Here we investigate the intrinsic phonon-limited mobility of electrons and holes in wurtzite GaN using the ab initio Boltzmann transport formalism, including all electron-phonon scattering processes and many-body quasiparticle band structures. We predict that the hole mobility can be increased by reversing the sign of the crystal-field splitting in such a way as to lift the split-off hole states above the light and heavy holes. We find that a 2% biaxial tensile strain can increase the hole mobility by 230%, up to a theoretical Hall mobility of 120 cm^{2}/V s at room temperature and 620 cm^{2}/V s at 100 K.

15.
Phys Rev Lett ; 122(24): 246403, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31322376

RESUMO

We develop a formalism and a computational method to study polarons in insulators and semiconductors from first principles. Unlike in standard calculations requiring large supercells, we solve a secular equation involving phonons and electron-phonon matrix elements from density-functional perturbation theory, in a spirit similar to the Bethe-Salpeter equation for excitons. We show that our approach describes seamlessly large and small polarons, and we illustrate its capability by calculating wave functions, formation energies, and spectral decomposition of polarons in LiF and Li_{2}O_{2}.

16.
Phys Rev Lett ; 121(8): 086402, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30192620

RESUMO

We elucidate the nature of the electron-phonon interaction in the archetypal hybrid perovskite CH_{3}NH_{3}PbI_{3} using ab initio many-body calculations and an exactly solvable model. We demonstrate that electrons and holes near the band edges primarily interact with three distinct groups of longitudinal-optical vibrations, in order of importance: the stretching of the Pb-I bond, the bending of the Pb-I-Pb bonds, and the libration of the organic cations. These polar phonons induce ultrafast intraband carrier relaxation over timescales of 6-30 fs and yield polaron effective masses 28% heavier than the bare band masses. These findings allow us to rationalize previous experimental observations and provide a key to understanding carrier dynamics in halide perovskites.

17.
Angew Chem Int Ed Engl ; 57(17): 4585-4589, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29485742

RESUMO

Two-dimensional boron sheets (borophenes) have been successfully synthesized in experiments and are expected to exhibit intriguing transport properties. A comprehensive first-principles study is reported of the intrinsic electrical resistivity of emerging borophene structures. The resistivity is highly dependent on different polymorphs and electron densities of borophene. Interestingly, a universal behavior of the intrinsic resistivity is well-described using the Bloch-Grüneisen model. In contrast to graphene and conventional metals, the intrinsic resistivity of borophenes can be easily tuned by adjusting carrier densities, while the Bloch-Grüneisen temperature is nearly fixed at 100 K. This work suggests that monolayer boron can serve as intriguing platform for realizing tunable two-dimensional electronic devices.

18.
J Am Chem Soc ; 139(17): 6030-6033, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28426219

RESUMO

Lead halide perovskites are materials with excellent optoelectronic and photovoltaic properties. However, some hurdles remain prior to commercialization of these materials, such as chemical stability, phase stability, sensitivity to moisture, and potential issues due to the toxicity of lead. Here, we report a new type of lead-free perovskite related compound, Cs2PdBr6. This compound is solution processable, exhibits long-lived photoluminescence, and an optical band gap of 1.6 eV. Density functional theory calculations indicate that this compound has dispersive electronic bands, with electron and hole effective masses of 0.53 and 0.85 me, respectively. In addition, Cs2PdBr6 is resistant to water, in contrast to lead-halide perovskites, indicating excellent prospects for long-term stability. These combined properties demonstrate that Cs2PdBr6 is a promising novel compound for optoelectronic applications.

19.
Phys Rev Lett ; 119(1): 017001, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28731743

RESUMO

We report evidence of a nonadiabatic Kohn anomaly in boron-doped diamond, using a joint theoretical and experimental analysis of the phonon dispersion relations. We demonstrate that standard calculations of phonons using density-functional perturbation theory are unable to reproduce the dispersion relations of the high-energy phonons measured by high-resolution inelastic x-ray scattering. On the contrary, by taking into account nonadiabatic effects within a many-body field-theoretic framework, we obtain excellent agreement with our experimental data. This result indicates a breakdown of the Born-Oppenheimer approximation in the phonon dispersion relations of boron-doped diamond.

20.
Phys Rev Lett ; 119(8): 087003, 2017 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-28952767

RESUMO

We elucidate the origin of the phonon-mediated superconductivity in 2H-NbS_{2} using the ab initio anisotropic Migdal-Eliashberg theory including Coulomb interactions. We demonstrate that superconductivity is associated with Fermi surface hot spots exhibiting an unusually strong electron-phonon interaction. The electron-lattice coupling is dominated by low-energy anharmonic phonons, which place the system on the verge of a charge density wave instability. We also provide definitive evidence for two-gap superconductivity in 2H-NbS_{2}, and show that the low- and high-energy peaks observed in tunneling spectra correspond to the Γ- and K-centered Fermi surface pockets, respectively. The present findings call for further efforts to determine whether our proposed mechanism underpins superconductivity in the whole family of metallic transition metal dichalcogenides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA