Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Mol Plant Microbe Interact ; 36(10): 656-665, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37851914

RESUMO

Signals are exchanged at all stages of the arbuscular mycorrhizal (AM) symbiosis between fungi and their host plants. Root-exuded strigolactones are well-known early symbiotic cues, but the role of other phytohormones as interkingdom signals has seldom been investigated. Here we focus on ethylene and cytokinins, for which candidate receptors have been identified in the genome of the AM fungus Rhizophagus irregularis. Ethylene is known from the literature to affect asymbiotic development of AM fungi, and in the present study, we found that three cytokinin forms could stimulate spore germination in R. irregularis. Heterologous complementation of a Saccharomyces cerevisiae mutant strain with the candidate ethylene receptor RiHHK6 suggested that this protein can sense and transduce an ethylene signal. Accordingly, its N-terminal domain expressed in Pichia pastoris displayed saturable binding to radiolabeled ethylene. Thus, RiHHK6 displays the expected characteristics of an ethylene receptor. In contrast, the candidate cytokinin receptor RiHHK7 did not complement the S. cerevisiae mutant strain or Medicago truncatula cytokinin receptor mutants and seemed unable to bind cytokinins, suggesting that another receptor is involved in the perception of these phytohormones. Taken together, our results support the hypothesis that AM fungi respond to a range of phytohormones and that these compounds bear multiple functions in the rhizosphere beyond their known roles as internal plant developmental regulators. Our analysis of two phytohormone receptor candidates also sheds new light on the possible perception mechanisms in AM fungi. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Micorrizas , Micorrizas/fisiologia , Citocininas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Histidina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fungos , Simbiose/fisiologia , Etilenos/metabolismo , Raízes de Plantas/metabolismo
2.
Plant J ; 94(3): 469-484, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29438577

RESUMO

While the characterization of the biosynthetic pathway of monoterpene indole alkaloids (MIAs) in leaves of Catharanthus roseus is now reaching completion, only two enzymes from the root counterpart dedicated to tabersonine metabolism have been identified to date, namely tabersonine 19-hydroxylase (T19H) and minovincine 19-O-acetyltransferase (MAT). Albeit the recombinant MAT catalyzes MIA acetylation at low efficiency in vitro, we demonstrated that MAT was inactive when expressed in yeast and in planta, suggesting an alternative function for this enzyme. Therefore, through transcriptomic analysis of periwinkle adventitious roots, several other BAHD acyltransferase candidates were identified based on the correlation of their expression profile with T19H and found to localize in small genomic clusters. Only one, named tabersonine derivative 19-O-acetyltransferase (TAT) was able to acetylate the 19-hydroxytabersonine derivatives from roots, such as minovincinine and hörhammericine, following expression in yeast. Kinetic studies also showed that the recombinant TAT was specific for root MIAs and displayed an up to 200-fold higher catalytic efficiency than MAT. In addition, gene expression analysis, protein subcellular localization and heterologous expression in Nicotiana benthamiana were in agreement with the prominent role of TAT in acetylation of root-specific MIAs, thereby redefining the molecular determinants of the root MIA biosynthetic pathway. Finally, identification of TAT provided a convenient tool for metabolic engineering of MIAs in yeast enabling efficiently mixing different biosynthetic modules spatially separated in the whole plant. This combinatorial synthesis associating several enzymes from Catharanthus roseus resulted in the conversion of tabersonine in tailor-made MIAs bearing both leaf and root-type decorations.


Assuntos
Acetiltransferases/metabolismo , Catharanthus/metabolismo , Alcaloides Indólicos/metabolismo , Monoterpenos/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Quinolinas/metabolismo , Acetilação , Acetiltransferases/genética , Catharanthus/enzimologia , Catharanthus/genética , Redes e Vias Metabólicas , Microrganismos Geneticamente Modificados , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/enzimologia
3.
Plant Physiol ; 177(4): 1473-1486, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29934299

RESUMO

Lochnericine is a major monoterpene indole alkaloid (MIA) in the roots of Madagascar periwinkle (Catharanthus roseus). Lochnericine is derived from the stereoselective C6,C7-epoxidation of tabersonine and can be metabolized further to generate other complex MIAs. While the enzymes responsible for its downstream modifications have been characterized, those involved in lochnericine biosynthesis remain unknown. By combining gene correlation studies, functional assays, and transient gene inactivation, we identified two highly conserved P450s that efficiently catalyze the epoxidation of tabersonine: tabersonine 6,7-epoxidase isoforms 1 and 2 (TEX1 and TEX2). Both proteins are quite divergent from the previously characterized tabersonine 2,3-epoxidase and are more closely related to tabersonine 16-hydroxylase, involved in vindoline biosynthesis in leaves. Biochemical characterization of TEX1/2 revealed their strict substrate specificity for tabersonine and their inability to epoxidize 19-hydroxytabersonine, indicating that they catalyze the first step in the pathway leading to hörhammericine production. TEX1 and TEX2 displayed complementary expression profiles, with TEX1 expressed mainly in roots and TEX2 in aerial organs. Our results suggest that TEX1 and TEX2 originated from a gene duplication event and later acquired divergent, organ-specific regulatory elements for lochnericine biosynthesis throughout the plant, as supported by the presence of lochnericine in flowers. Finally, through the sequential expression of TEX1 and up to four other MIA biosynthetic genes in yeast, we reconstituted the 19-acetylhörhammericine biosynthetic pathway and produced tailor-made MIAs by mixing enzymatic modules that are naturally spatially separated in the plant. These results lay the groundwork for the metabolic engineering of tabersonine/lochnericine derivatives of pharmaceutical interest.


Assuntos
Catharanthus/metabolismo , Alcaloides Indólicos/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas de Plantas/metabolismo , Catharanthus/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Isoenzimas/genética , Isoenzimas/metabolismo , Engenharia Metabólica/métodos , Microrganismos Geneticamente Modificados , Oxigenases de Função Mista/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Alcaloides de Triptamina e Secologanina , Leveduras/genética , Leveduras/metabolismo
4.
Planta ; 246(1): 45-60, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28349256

RESUMO

MAIN CONCLUSION: The use of a VIGS approach to silence the newly characterized apple tree SQS isoforms points out the biological function of phytosterols in plastid pigmentation and leaf development. Triterpenoids are beneficial health compounds highly accumulated in apple; however, their metabolic regulation is poorly understood. Squalene synthase (SQS) is a key branch point enzyme involved in both phytosterol and triterpene biosynthesis. In this study, two SQS isoforms were identified in apple tree genome. Both isoforms are located at the endoplasmic reticulum surface and were demonstrated to be functional SQS enzymes using an in vitro activity assay. MdSQS1 and MdSQS2 display specificities in their expression profiles with respect to plant organs and environmental constraints. This indicates a possible preferential involvement of each isoform in phytosterol and/or triterpene metabolic pathways as further argued using RNAseq meta-transcriptomic analyses. Finally, a virus-induced gene silencing (VIGS) approach was used to silence MdSQS1 and MdSQS2. The concomitant down-regulation of both MdSQS isoforms strongly affected phytosterol synthesis without alteration in triterpene accumulation, since triterpene-specific oxidosqualene synthases were found to be up-regulated to compensate metabolic flux reduction. Phytosterol deficiencies in silenced plants clearly disturbed chloroplast pigmentation and led to abnormal development impacting leaf division rather than elongation or differentiation. In conclusion, beyond the characterization of two SQS isoforms in apple tree, this work brings clues for a specific involvement of each isoform in phytosterol and triterpene pathways and emphasizes the biological function of phytosterols in development and chloroplast integrity. Our report also opens the door to metabolism studies in Malus domestica using the apple latent spherical virus-based VIGS method.


Assuntos
Farnesil-Difosfato Farnesiltransferase/genética , Inativação Gênica/fisiologia , Malus/crescimento & desenvolvimento , Malus/metabolismo , Fitosteróis/biossíntese , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plastídeos/metabolismo , Secoviridae/genética , Farnesil-Difosfato Farnesiltransferase/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Malus/genética , Folhas de Planta/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Triterpenos/metabolismo
5.
Plant Physiol ; 172(3): 1563-1577, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27688619

RESUMO

Expansion of the biosynthesis of plant specialized metabolites notably results from the massive recruitment of cytochrome P450s that catalyze multiple types of conversion of biosynthetic intermediates. For catalysis, P450s require a two-electron transfer catalyzed by shared cytochrome P450 oxidoreductases (CPRs), making these auxiliary proteins an essential component of specialized metabolism. CPR isoforms usually group into two distinct classes with different proposed roles, namely involvement in primary and basal specialized metabolisms for class I and inducible specialized metabolism for class II. By studying the role of CPRs in the biosynthesis of monoterpene indole alkaloids, we provide compelling evidence of an operational specialization of CPR isoforms in Catharanthus roseus (Madagascar periwinkle). Global analyses of gene expression correlation combined with transcript localization in specific leaf tissues and gene-silencing experiments of both classes of CPR all point to the strict requirement of class II CPRs for monoterpene indole alkaloid biosynthesis with a minimal or null role of class I. Direct assays of interaction and reduction of P450s in vitro, however, showed that both classes of CPR performed equally well. Such high specialization of class II CPRs in planta highlights the evolutionary strategy that ensures an efficient reduction of P450s in specialized metabolism.


Assuntos
Alcaloides/biossíntese , Vias Biossintéticas , Catharanthus/enzimologia , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Biocatálise , Vias Biossintéticas/genética , Catharanthus/genética , Cotilédone/metabolismo , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes de Plantas , Alcaloides Indólicos/metabolismo , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/genética , Folhas de Planta/metabolismo , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos , Frações Subcelulares/enzimologia
6.
FEMS Yeast Res ; 16(6)2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27620459

RESUMO

The fungal CTG clade comprises a number of well-known yeasts that impact human health or with high biotechnological potential. To further extend the set of molecular tools dedicated to these microorganisms, the initial focus of this study was to develop a mycophenolic acid (MPA) resistance cassette. Surprisingly, while we were carrying out preliminary susceptibility testing experiments in a set of yeast species, Meyerozyma guilliermondii, although not being a MPA producer, was found to be primarily resistant toward this drug, whereas a series of nine related species were susceptible to MPA. Using comparative and functional genomic approaches, we demonstrated that all MPA-susceptible CTG clade species display a single gene, referred to as IMH3.1, encoding the MPA target inosine monophosphate dehydrogenase (IMPDH) and that MPA resistance relies on the presence in the M. guilliermondii genome of an additional IMPDH-encoding gene (IMH3.2). The M. guilliermondii IMH3.2 gene displays marked differences compared to IMH3.1 including the lack of intron, a roughly 160-fold higher transcription level and a serine residue at position 251. Placed under the control of the M. guilliermondii actin 1 gene promoter, IMH3.2 was successfully used to transform Lodderomyces elongisporus, Clavispora lusitaniae, Scheffersomyces stipitis and Candida parapsilosis.

7.
Int J Mol Sci ; 17(12)2016 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-27941652

RESUMO

Previous works have shown the existence of protein partnerships belonging to a MultiStep Phosphorelay (MSP) in Populus putatively involved in osmosensing. This study is focused on the identification of a histidine-aspartate kinase, HK1b, paralog of HK1a. The characterization of HK1b showed its ability to homo- and hetero-dimerize and to interact with a few Histidine-containing Phosphotransfer (HPt) proteins, suggesting a preferential partnership in poplar MSP linked to drought perception. Furthermore, determinants for interaction specificity between HK1a/1b and HPts were studied by mutagenesis analysis, identifying amino acids involved in this specificity. The HK1b expression analysis in different poplar organs revealed its co-expression with three HPts, reinforcing the hypothesis of partnership participation in the MSP in planta. Moreover, HK1b was shown to act as an osmosensor with kinase activity in a functional complementation assay of an osmosensor deficient yeast strain. These results revealed that HK1b showed a different behaviour for canonical phosphorylation of histidine and aspartate residues. These phosphorylation modularities of canonical amino acids could explain the improved osmosensor performances observed in yeast. As conserved duplicates reflect the selective pressures imposed by the environmental requirements on the species, our results emphasize the importance of HK1 gene duplication in poplar adaptation to drought stress.


Assuntos
Ácido Aspártico/metabolismo , Pressão Osmótica , Populus/enzimologia , Homologia de Sequência de Aminoácidos , Estresse Fisiológico , Aminoácidos/metabolismo , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Histidina Quinase , Proteínas Mutantes/metabolismo , Mutação/genética , Filogenia , Populus/genética , Ligação Proteica , Multimerização Proteica , Reprodutibilidade dos Testes , Estresse Fisiológico/genética , Especificidade por Substrato , Técnicas do Sistema de Duplo-Híbrido
8.
BMC Genomics ; 16: 619, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26285573

RESUMO

BACKGROUND: Transcriptome sequencing offers a great resource for the study of non-model plants such as Catharanthus roseus, which produces valuable monoterpenoid indole alkaloids (MIAs) via a complex biosynthetic pathway whose characterization is still undergoing. Transcriptome databases dedicated to this plant were recently developed by several consortia to uncover new biosynthetic genes. However, the identification of missing steps in MIA biosynthesis based on these large datasets may be limited by the erroneous assembly of close transcripts and isoforms, even with the multiple available transcriptomes. RESULTS: Secologanin synthases (SLS) are P450 enzymes that catalyze an unusual ring-opening reaction of loganin in the biosynthesis of the MIA precursor secologanin. We report here the identification and characterization in C. roseus of a new isoform of SLS, SLS2, sharing 97 % nucleotide sequence identity with the previously characterized SLS1. We also discovered that both isoforms further oxidize secologanin into secoxyloganin. SLS2 had however a different expression profile, being the major isoform in aerial organs that constitute the main site of MIA accumulation. Unfortunately, we were unable to find a current C. roseus transcriptome database containing simultaneously well reconstructed sequences of SLS isoforms and accurate expression levels. After a pair of close mRNA encoding tabersonine 16-hydroxylase (T16H1 and T16H2), this is the second example of improperly assembled transcripts from the MIA pathway in the public transcriptome databases. To construct a more complete transcriptome resource for C. roseus, we re-processed previously published transcriptome data by combining new single assemblies. Care was particularly taken during clustering and filtering steps to remove redundant contigs but not transcripts encoding potential isoforms by monitoring quality reconstruction of MIA genes and specific SLS and T16H isoforms. The new consensus transcriptome allowed a precise estimation of abundance of SLS and T16H isoforms, similar to qPCR measurements. CONCLUSIONS: The C. roseus consensus transcriptome can now be used for characterization of new genes of the MIA pathway. Furthermore, additional isoforms of genes encoding distinct MIA biosynthetic enzymes isoforms could be predicted suggesting the existence of a higher level of complexity in the synthesis of MIA, raising the question of the evolutionary events behind what seems like redundancy.


Assuntos
Catharanthus/genética , Sistema Enzimático do Citocromo P-450/genética , Perfilação da Expressão Gênica/métodos , Glucosídeos Iridoides/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Processamento Alternativo , Catharanthus/enzimologia , Sistema Enzimático do Citocromo P-450/metabolismo , Bases de Dados Genéticas , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/análise , RNA de Plantas/análise
9.
J Exp Bot ; 66(22): 7271-85, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26363642

RESUMO

Phenolamides, so called hydroxycinnamic acid amides, are specialized metabolites produced in higher plants, involved in development, reproduction and serve as defence compounds in biotic interactions. Among them, trihydroxycinnamoyl spermidine derivatives were initially found to be synthetized by a spermidine hydroxycinnamoyltransferase (AtSHT) in Arabidopsis thaliana and to accumulate in the pollen coat. This study reports the identification, in Malus domestica, of an acyltransferase able to complement the sht mutant of Arabidopsis. The quantitative RT-PCR expression profile of MdSHT reveals a specific expression in flowers coordinated with anther development and tapetum cell activities. Three phenolamides including N (1),N (5),N (10)-tricoumaroyl spermidine and N (1),N (5)-dicoumaroyl-N (10)-caffeoyl spermidine identified by LC/MS, were shown to accumulate specifically in pollen grain coat of apple tree. Moreover, in vitro biochemical characterization confirmed MdSHT capacity to synthesize tri-substituted spermidine derivatives with a substrate specificity restricted to p-coumaroyl-CoA and caffeoyl-CoA as an acyl donor. Further investigations of the presence of tri-substituted hydroxycinnamoyl spermidine conjugates in higher plants were performed by targeted metabolic analyses in pollens coupled with bioinformatic analyses of putative SHT orthologues in a wide range of available plant genomes. This work highlights a probable early evolutionary appearance in the common ancestral core Eudicotyledons of a novel enzyme from the BAHD acyltransferase superfamily, dedicated to the synthesis of trihydroxycinnamoyl spermidines in pollen coat. This pathway was maintained in most species; however, recent evolutionary divergences have appeared among Eudicotyledons, such as an organ reallocation of SHT gene expression in Fabales and a loss of SHT in Malvales and Cucurbitales.


Assuntos
Aciltransferases/metabolismo , Evolução Biológica , Malus/enzimologia , Pólen/química , Espermidina/biossíntese , Flores/crescimento & desenvolvimento , Flores/metabolismo , Teste de Complementação Genética , Magnoliopsida/química , Malus/química , Estrutura Molecular , Mutação , Análise de Sequência de Proteína
10.
Fungal Genet Biol ; 65: 25-36, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24518307

RESUMO

Fungal histidine kinase receptors (HKR) sense and transduce many intra- and extracellular signals that regulate a wide range of physiological processes. Candida CTG clade species commonly possess three types of HKR namely Sln1p (type VI), Nik1p (type III) and Chk1p (type X). Although some recent work has demonstrated the potential involvement of HKR in osmoregulation, morphogenesis, sexual development, adaptation to osmotic stresses and drug resistance in distinct Candida species, little data is available in relation to their subcellular distribution within yeast cells. We describe in this work the comparative subcellular localization of class III, VI, and X HKRs in Candida guilliermondii, a yeast CTG clade species of clinical and biotechnological interest. Using a fluorescent protein fusion approach, we showed that C. guilliermondii Sln1p fused to the yellow fluorescent protein (Sln1p-YFP) appeared to be anchored in the plasma membrane. By contrast, both Chk1p-YFP and YFP-Chk1p were localized in the nucleocytosol of C. guilliermondii transformed cells. Furthermore, while Nik1p-YFP fusion protein always displayed a nucleocytosolic localization, we noted that most of the cells expressing YFP-Nik1p fusion protein displayed an aggregated pattern of fluorescence in the cytosol but not in the nucleus. Interestingly, Sln1p-YFP and Nik1p-YFP fusion protein localization changed in response to hyperosmotic stress by rapidly clustering into punctuated structures that could be associated to osmotic stress signaling. To date, this work provides the first insight into the subcellular localization of the three classes of HKR encoded by CTG clade yeast genomes and constitutes original new data concerning this family of receptors. This represents also an essential prerequisite to open a window into the understanding of the global architecture of HKR-mediated signaling pathways in CTG clade species.


Assuntos
Candida/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Quinases/metabolismo , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Histidina Quinase , Pressão Osmótica , Fosforilação , Transdução de Sinais
11.
Plant Physiol ; 163(4): 1792-803, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24108213

RESUMO

Hydroxylation of tabersonine at the C-16 position, catalyzed by tabersonine 16-hydroxylase (T16H), initiates the synthesis of vindoline that constitutes the main alkaloid accumulated in leaves of Catharanthus roseus. Over the last decade, this reaction has been associated with CYP71D12 cloned from undifferentiated C. roseus cells. In this study, we isolated a second cytochrome P450 (CYP71D351) displaying T16H activity. Biochemical characterization demonstrated that CYP71D12 and CYP71D351 both exhibit high affinity for tabersonine and narrow substrate specificity, making of T16H, to our knowledge, the first alkaloid biosynthetic enzyme displaying two isoforms encoded by distinct genes characterized to date in C. roseus. However, both genes dramatically diverge in transcript distribution in planta. While CYP71D12 (T16H1) expression is restricted to flowers and undifferentiated cells, the CYP71D351 (T16H2) expression profile is similar to the other vindoline biosynthetic genes reaching a maximum in young leaves. Moreover, transcript localization by carborundum abrasion and RNA in situ hybridization demonstrated that CYP71D351 messenger RNAs are specifically located to leaf epidermis, which also hosts the next step of vindoline biosynthesis. Comparison of high- and low-vindoline-accumulating C. roseus cultivars also highlights the direct correlation between CYP71D351 transcript and vindoline levels. In addition, CYP71D351 down-regulation mediated by virus-induced gene silencing reduces vindoline accumulation in leaves and redirects the biosynthetic flux toward the production of unmodified alkaloids at the C-16 position. All these data demonstrate that tabersonine 16-hydroxylation is orchestrated in an organ-dependent manner by two genes including CYP71D351, which encodes the specific T16H isoform acting in the foliar vindoline biosynthesis.


Assuntos
Catharanthus/enzimologia , Sistema Enzimático do Citocromo P-450/metabolismo , Especificidade de Órgãos , Proteínas de Plantas/metabolismo , Vimblastina/análogos & derivados , Biocatálise , Vias Biossintéticas/genética , Catharanthus/citologia , Catharanthus/genética , Sistema Enzimático do Citocromo P-450/genética , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Retículo Endoplasmático/enzimologia , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes de Plantas/genética , Hidroxilação , Alcaloides Indólicos/química , Alcaloides Indólicos/metabolismo , Cinética , Metaboloma/genética , Dados de Sequência Molecular , Especificidade de Órgãos/genética , Epiderme Vegetal/citologia , Epiderme Vegetal/enzimologia , Epiderme Vegetal/genética , Proteínas de Plantas/genética , Quinolinas/química , Quinolinas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Especificidade por Substrato , Vimblastina/biossíntese , Vimblastina/química
12.
J Chem Ecol ; 40(7): 826-35, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24944001

RESUMO

Recently, a renewed interest in cytokinins (CKs) has allowed the characterization of these phytohormones as key regulatory molecules in plant biotic interactions. They have been proved to be instrumental in microbe- and insect-mediated plant phenotypes that can be either beneficial or detrimental for the host-plant. In parallel, insect endosymbiotic bacteria have emerged as key players in plant-insect interactions mediating directly or indirectly fundamental aspects of insect nutrition, such as insect feeding efficiency or the ability to manipulate plant physiology to overcome food nutritional imbalances. However, mechanisms that regulate CK production and the role played by insects and their endosymbionts remain largely unknown. Against this backdrop, studies on plant-associated bacteria have revealed fascinating and complex molecular mechanisms that lead to the production of bacterial CKs and the modulation of plant-borne CKs which ultimately result in profound metabolic and morphological plant modifications. This review highlights major strategies used by plant-associated bacteria that impact the CK homeostasis of their host-plant, to raise parallels with strategies used by phytophagous insects and to discuss the possible role played by endosymbiotic bacteria in these CK-mediated plant phenotypes. We hypothesize that insects employ a CK-mix production strategy that manipulates the phytohormonal balance of their host-plant and overtakes plant gene expression causing a metabolic and morphological habitat modification. In addition, insect endosymbiotic bacteria may prove to be instrumental in these manipulations through the production of bacterial CKs, including specific forms that challenge the CK-degrading capacity of the plant (thus ensuring persistent effects) and the CK-mediated plant defenses.


Assuntos
Bactérias/efeitos dos fármacos , Citocininas/farmacologia , Plantas/metabolismo , Animais , Interações Hospedeiro-Parasita/efeitos dos fármacos , Insetos/efeitos dos fármacos , Insetos/fisiologia , Fenótipo , Tumores de Planta/microbiologia , Tumores de Planta/parasitologia , Plantas/microbiologia
13.
Plant Mol Biol ; 79(4-5): 443-59, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22638903

RESUMO

Isopentenyl diphosphate isomerases (IDI) catalyze the interconversion of the two isoprenoid universal C5 units, isopentenyl diphosphate and dimethylally diphosphate, to allow the biosynthesis of the large variety of isoprenoids including both primary and specialized metabolites. This isomerisation is usually performed by two distinct IDI isoforms located either in plastids/peroxisomes or mitochondria/peroxisomes as recently established in Arabidopsis thaliana mainly accumulating primary isoprenoids. By contrast, almost nothing is known in plants accumulating specialized isoprenoids. Here we report the cloning and functional validation of an IDI encoding cDNA (CrIDI1) from Catharanthus roseus that produces high amount of monoterpenoid indole alkaloids. The corresponding gene is expressed in all organs including roots, flowers and young leaves where transcripts have been detected in internal phloem parenchyma and epidermis. The CrIDI1 gene also produces long and short transcripts giving rise to corresponding proteins with and without a N-terminal transit peptide (TP), respectively. Expression of green fluorescent protein fusions revealed that the long isoform is targeted to both plastids and mitochondria with an apparent similar efficiency. Deletion/fusion experiments established that the first 18-residues of the N-terminal TP are solely responsible of the mitochondria targeting while the entire 77-residue long TP is needed for an additional plastid localization. The short isoform is targeted to peroxisomes in agreement with the presence of peroxisome targeting sequence at its C-terminal end. This complex plastid/mitochondria/peroxisomes triple targeting occurring in C. roseus producing specialized isoprenoid secondary metabolites is somehow different from the situation observed in A. thaliana mainly producing housekeeping isoprenoid metabolites.


Assuntos
Isomerases de Ligação Dupla Carbono-Carbono/genética , Catharanthus/enzimologia , Catharanthus/genética , Genes de Plantas , Sequência de Aminoácidos , Sequência de Bases , Isomerases de Ligação Dupla Carbono-Carbono/química , Isomerases de Ligação Dupla Carbono-Carbono/metabolismo , Clonagem Molecular , DNA de Plantas/genética , Hemiterpenos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Mitocôndrias/enzimologia , Dados de Sequência Molecular , Peroxissomos/enzimologia , Plantas Geneticamente Modificadas , Plastídeos/enzimologia , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Terpenos/metabolismo , Transformação Genética
14.
Mol Biol Rep ; 39(8): 8491-6, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22714908

RESUMO

In Catharanthus roseus cell cultures, cytokinins (CK) improve monoterpenoid indole alkaloids (MIAs) accumulation. This metabolite production is correlated with an increase of transcripts corresponding to genes encoding both elements of the CK-signaling pathway and enzymes implicated in MIAs biosynthesis. However, it has not been demonstrated that the CK signal, leading to MIAs accumulation, comes through components identified as belonging to the CK-signaling pathway. In this work, we addressed this question, by transgenesis, using an inducible RNAi system targeting element of CK-signaling. In transgenic lines, the up-regulation by CK of two genes involved in MIA biosynthesis was abolished. These results demonstrate a relationship between the CK-signaling and the MIAs biosynthetic pathways.


Assuntos
Aldose-Cetose Isomerases/genética , Catharanthus/genética , Catharanthus/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas , Complexos Multienzimáticos/genética , Oxirredutases/genética , Fosfotransferases/genética , Aldose-Cetose Isomerases/metabolismo , Técnicas de Cultura de Células , Linhagem Celular , Sistema Enzimático do Citocromo P-450/metabolismo , Dexametasona/farmacologia , Regulação para Baixo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Inativação Gênica , Complexos Multienzimáticos/metabolismo , Oxirredutases/metabolismo , Fosfotransferases/metabolismo , Interferência de RNA , Alcaloides de Triptamina e Secologanina/metabolismo , Transdução de Sinais , Transcrição Gênica
15.
Cells ; 9(11)2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33238457

RESUMO

Cytokinins (CKs) and ethylene (ET) are among the most ancient organic chemicals on Earth. A wide range of organisms including plants, algae, fungi, amoebae, and bacteria use these substances as signaling molecules to regulate cellular processes. Because of their ancestral origin and ubiquitous occurrence, CKs and ET are also considered to be ideal molecules for inter-kingdom communication. Their signal transduction pathways were first historically deciphered in plants and are related to the two-component systems, using histidine kinases as primary sensors. Paradoxically, although CKs and ET serve as signaling molecules in different kingdoms, it has been supposed for a long time that the canonical CK and ET signaling pathways are restricted to terrestrial plants. These considerations have now been called into question following the identification over recent years of genes encoding CK and ET receptor homologs in many other lineages within the tree of life. These advances shed new light on the dissemination and evolution of these hormones as both intra- and inter-specific communication molecules in prokaryotic and eukaryotic organisms.


Assuntos
Citocininas/metabolismo , Etilenos/metabolismo , Eucariotos/metabolismo , Células Procarióticas/metabolismo , Transdução de Sinais/fisiologia , Humanos
16.
Methods Mol Biol ; 2172: 183-197, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32557370

RESUMO

Virus-induced gene silencing (VIGS) is a fast and efficient tool to investigate gene function in plant as an alternative to knock down/out transgenic lines, especially in plant species difficult to transform and challenging to regenerate such as perennial woody plants. In apple tree, a VIGS vector has been previously developed based on the Apple latent spherical virus (ALSV) and an efficient inoculation method has been optimized using biolistics. This report described detailed step-by-step procedure to design and silence a gene of interest (GOI) in apple tree tissues using the ALSV-based vector.


Assuntos
Inativação Gênica/fisiologia , Vírus de Plantas/patogenicidade , Biolística , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Malus/metabolismo , Malus/virologia , Vírus de Plantas/genética , Secoviridae/genética , Secoviridae/patogenicidade
17.
Plants (Basel) ; 8(12)2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835814

RESUMO

We have previously identified proteins in poplar which belong to an osmosensing (OS) signaling pathway, called a multistep phosphorelay (MSP). The MSP comprises histidine-aspartate kinases (HK), which act as membrane receptors; histidine phosphotransfer (HPt) proteins, which act as phosphorelay proteins; and response regulators (RR), some of which act as transcription factors. In this study, we identified the HK proteins homologous to the Arabidopsis cytokinin (CK) receptors, which are first partners in the poplar cytokinin MSP, and focused on specificity of these two MSPs (CK and OS), which seem to share the same pool of HPt proteins. Firstly, we isolated five CK HKs from poplar which are homologous to Arabidopsis AHK2, AHK3, and AHK4, namely, HK2, HK3a, HK3b, HK4a, HK4b. These HKs were shown to be functional kinases, as observed in a functional complementation of a yeast HK deleted strain. Moreover, one of these HKs, HK4a, was shown to have kinase activity dependent on the presence of CK. Exhaustive interaction tests between these five CK HKs and the 10 HPts characterized in poplar were performed using two-hybrid and BiFC experiments. The resulting partnership was compared to that previously identified between putative osmosensors HK1a/1b and HPt proteins. Finally, in planta coexpression analysis of genes encoding these potential partners revealed that almost all HPts are coexpressed with CK HKs in four different poplar organs. Overall, these results allowed us to unravel the common and specific partnerships existing between OS and CK MSP in Populus.

18.
Sci Rep ; 9(1): 14431, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31594989

RESUMO

Large-scale gene co-expression networks are an effective methodology to analyze sets of co-expressed genes and discover new gene functions or associations. Distances between genes are estimated according to their expression profiles and are visualized in networks that may be further partitioned to reveal communities of co-expressed genes. Creating expression profiles is now eased by the large amounts of publicly available expression data (microarrays and RNA-seq). Although many distance calculation methods have been intensively compared and reviewed in the past, it is unclear how to proceed when many samples reflecting a wide range of different conditions are available. Should as many samples as possible be integrated into network construction or be partitioned into smaller sets of more related samples? Previous studies have indicated a saturation in network performances to capture known associations once a certain number of samples is included in distance calculations. Here, we examined the influence of sample size on co-expression network construction using microarray and RNA-seq expression data from three plant species. We tested different down-sampling methods and compared network performances in recovering known gene associations to networks obtained from full datasets. We further examined how aggregating networks may help increase this performance by testing six aggregation methods.


Assuntos
Conjuntos de Dados como Assunto , Redes Reguladoras de Genes , Arabidopsis , Perfilação da Expressão Gênica , Solanum lycopersicum , Análise em Microsséries , RNA-Seq , Tamanho da Amostra , Zea mays
19.
Phytochemistry ; 157: 135-144, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30399496

RESUMO

The UDP-glycosyltransferase UGT88F subfamily has been described first in Malus x domestica with the characterization of UGT88F1. Up to now UGT88F1 was one of the most active UGT glycosylating dihydrochalcones in vitro. The involvement of UGT88F1 in phloridzin (phloretin 2'-O-glucoside) synthesis, the main apple tree dihydrochalcone, was further confirmed in planta. Since the characterization of UGT88F1, this new UGT subfamily has been poorly studied probably because it seemed restricted to Maloideae. In the present study, we investigate the apple tree genome to identify and biochemically characterize the whole UGT88F subfamily. The apple tree genome contains five full-length UGT88F genes out of which three newly identified members (UGT88F6, UGT88F7 and UGT88F8) and a pseudogene. These genes are organized into two genomic clusters resulting from the recent global genomic duplication event in the apple tree. We show that recombinant UGT88F8 protein specifically glycosylates phloretin in the 2'OH position to synthetize phloridzin in vitro and was therefore named UDP-glucose: phloretin 2'-O-glycosyltransferase. The Km values of UGT88F8 are 7.72 µM and 10.84 µM for phloretin and UDP-glucose respectively and are in the same range as UGT88F1 catalytic parameters thus constituting two isoforms. Co-expression patterns of both UGT88F1 and UGT88F8 argue for a redundant function in phloridzin biosynthesis in planta. Contrastingly, recombinant UGT88F6 protein is able to glycosylate in vitro a wide range of flavonoids including flavonols, flavones, flavanones, chalcones and dihydrochalcones, although flavonols are the preferred substrates, e.g. Km value for kaempferol is 2.1 µM. Depending on the flavonoid, glycosylation occurs at least on the 3-OH and 7-OH positions. Therefore UGT88F6 corresponds to an UDP-glucose: flavonoid 3/7-O-glycosyltransferase. Finally, a molecular modeling study highlights a very high substitution rate of residues in the acceptor binding pocket between UGT88F8 and UGT88F6 which is responsible for the enzymes divergence in substrate and regiospecificity, despite an overall high protein homology.


Assuntos
Genômica , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Malus/enzimologia , Malus/genética , Genoma de Planta/genética , Glicosiltransferases/química , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Conformação Proteica , Temperatura
20.
J Biotechnol ; 289: 103-111, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30468817

RESUMO

Cytokinins (CK) have been extensively studied for their roles in plant development. Recently, they also appeared to ensure crucial functions in the pathogenicity of some bacterial and fungal plant pathogens. Thus, identifying cytokinin-producing pathogens is a prerequisite to gain a better understanding of their role in pathogenicity. Taking advantage of the cytokinin perception properties of Malus domestica CHASE Histidine Kinase receptor 2 (MdCHK2), we thereby developed a selective and highly sensitive yeast biosensor for the application of cytokinin detection in bacterial samples. The biosensor is based on the mutated sln1Δ Saccharomyces cerevisiae strain expressing MdCHK2. The biosensor does not require any extraction or purification steps of biological samples, enabling cytokinin analysis directly from crude bacterial supernatants. For the first time, the production of cytokinin was shown in the well-known plant pathogenic bacteria Erwinia amylovora and was also revealed in human pathogens Staphylococcus aureus and Streptococcus agalactiae. Importantly, this biosensor was shown to be an efficient tool for unraveling certain steps in cytokinin biosynthesis by micro-organisms since this it was successfully used to unveil the role of ygdH22, a LOG-like gene, that is probably involved in cytokinin biosynthesis pathway in Escherichia coli. Overall, we demonstrated that our biosensor displays several advantages including time- and cost-effectiveness by allowing a rapid and specific detection of cytokinins in bacterial supernatants These results also support its scalability to high-throughput formats.


Assuntos
Técnicas Biossensoriais , Citocininas/metabolismo , Histidina Quinase/genética , Proteínas de Plantas/genética , Saccharomyces cerevisiae/genética , Bactérias/metabolismo , Malus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA