Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Annu Rev Biochem ; 90: 451-474, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33556280

RESUMO

The preparation of extremely thin samples, which are required for high-resolution electron microscopy, poses extreme risk of damaging biological macromolecules due to interactions with the air-water interface. Although the rapid increase in the number of published structures initially gave little indication that this was a problem, the search for methods that substantially mitigate this hazard is now intensifying. The two main approaches under investigation are (a) immobilizing particles onto structure-friendly support films and (b) reducing the length of time during which such interactions may occur. While there is little possibility of outrunning diffusion to the interface, intentional passivation of the interface may slow the process of adsorption and denaturation. In addition, growing attention is being given to gaining more effective control of the thickness of the sample prior to vitrification.


Assuntos
Microscopia Crioeletrônica/instrumentação , Microscopia Crioeletrônica/métodos , Complexos Multiproteicos/química , Ar , Carbono/química , Difusão , Grafite/química , Lipídeos/química , Complexos Multiproteicos/isolamento & purificação , Desnaturação Proteica , Manejo de Espécimes/métodos , Estreptavidina/química , Água
2.
Cell ; 171(6): 1229-1231, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29195065

RESUMO

The Royal Swedish Academy of Sciences awarded the 2017 Nobel Prize for Chemistry to Jacques Dubochet, Joachim Frank, and Richard Henderson for "developing cryoelectron microscopy for the high-resolution structure determination of biomolecules in solution." Achieving this goal, which required innovation, persistence, and uncommon physical insight, has broadened horizons for structural studies in molecular and cell biology.


Assuntos
Química/história , Microscopia Crioeletrônica , Prêmio Nobel , História do Século XX , História do Século XXI , Proteínas/química
3.
J Struct Biol ; 214(1): 107827, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34915129

RESUMO

In principle, electron cryo-tomography (cryo-ET) of thin portions of cells provides high-resolution images of the three-dimensional spatial arrangement of all members of the proteome. In practice, however, radiation damage creates a tension between recording images at many different tilt angles, but at correspondingly reduced exposure levels, versus limiting the number of tilt angles in order to improve the signal-to-noise ratio (SNR). Either way, it is challenging to read the available information out at the level of atomic structure. Here, we first review work that explores the optimal strategy for data collection, which currently seems to favor the use of a limited angular range for tilting the sample or even the use of a single image to record the high-resolution information. Looking then to the future, we point to the alternative of so-called "deconvolution microscopy", which may be applied to tilt-series or optically-sectioned, focal series data. Recording data as a focal series has the advantage that little or no translational alignment of frames might be needed, and a three-dimensional reconstruction might require only 2/3 the number of images as does standard tomography. We also point to the unexploited potential of phase plates to increase the contrast, and thus to reduce the electron exposure levels while retaining the ability align and merge the data. In turn, using much lower exposures per image could have the advantage that high-resolution information is retained throughout the full data-set, whether recorded as a tilt series or a focal series of images.


Assuntos
Tomografia com Microscopia Eletrônica , Processamento de Imagem Assistida por Computador , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Substâncias Macromoleculares/química , Razão Sinal-Ruído
4.
Nat Methods ; 16(10): 1016-1020, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31562475

RESUMO

Transmission electron microscopy (TEM) of rapidly frozen biological specimens, or cryo-EM, would benefit from the development of a phase plate for in-focus phase contrast imaging. Several types of phase plates have been investigated, but rapid electrostatic charging of all such devices has hindered these efforts. Here, we demonstrate electron phase manipulation with a high-intensity continuous-wave laser beam, and use it as a phase plate for TEM. We demonstrate the laser phase plate by imaging an amorphous carbon film. The laser phase plate provides a stable and tunable phase shift without electrostatic charging or unwanted electron scattering. These results suggest the possibility for dose-efficient imaging of unstained biological macromolecules and cells.


Assuntos
Lasers , Microscopia Eletrônica de Transmissão/métodos , Elétrons , Luz , Eletricidade Estática
5.
J Struct Biol ; 213(4): 107798, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34534654

RESUMO

A rapid assay is described, based upon the Marangoni effect, which detects the formation of a denatured-protein film at the air-water interface (AWI) of aqueous samples. This assay requires no more than a 20 µL aliquot of sample, at a protein concentration of no more than1 mg/ml, and it can be performed with any buffer that is used to prepare grids for electron cryo-microscopy (cryo-EM). In addition, this assay provides an easy way to estimate the rate at which a given protein forms such a film at the AWI. Use of this assay is suggested as a way to pre-screen the effect of various additives and chemical modifications that one might use to optimize the preparation of grids, although the final proof of optimization still requires further screening of grids in the electron microscope. In those cases when the assay establishes that a given protein does form a sacrificial, denatured-protein monolayer, it is suggested that subsequent optimization strategies might focus on discovering how to improve the adsorption of native proteins onto that monolayer, rather than to prevent its formation. A second alternative might be to bind such proteins to the surface of rationally designed affinity grids, in order to prevent their diffusion to, and unwanted interaction with, the AWI.


Assuntos
Microscopia Crioeletrônica/métodos , Desnaturação Proteica , Proteínas/química , Proteínas/ultraestrutura , Manejo de Espécimes/métodos , Adsorção , Ar , Microscopia Crioeletrônica/instrumentação , Ferritinas/química , Ferritinas/ultraestrutura , Reprodutibilidade dos Testes , Propriedades de Superfície , Água/química
6.
Biochem Soc Trans ; 49(5): 2287-2298, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34709401

RESUMO

This mini-review provides an update regarding the substantial progress that has been made in using single-particle cryo-EM to obtain high-resolution structures for proteins and other macromolecules whose particle sizes are smaller than 100 kDa. We point out that establishing the limits of what can be accomplished, both in terms of particle size and attainable resolution, serves as a guide for what might be expected when attempting to improve the resolution of small flexible portions of a larger structure using focused refinement approaches. These approaches, which involve computationally ignoring all but a specific, targeted region of interest on the macromolecules, is known as 'masking and refining,' and it thus is the computational equivalent of the 'divide and conquer' approach that has been used so successfully in X-ray crystallography. The benefit of masked refinement, however, is that one is able to determine structures in their native architectural context, without physically separating them from the biological connections that they require for their function. This mini-review also compares where experimental achievements currently stand relative to various theoretical estimates for the smallest particle size that can be successfully reconstructed to high resolution. Since it is clear that a substantial gap still remains between the two, we briefly recap the areas in which further improvement seems possible, both in equipment and in methods.


Assuntos
Microscopia Crioeletrônica/métodos , Cristalografia por Raios X , Substâncias Macromoleculares/química , Modelos Moleculares
7.
Microsc Microanal ; 27(4): 767-775, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34085628

RESUMO

We introduce a novel composite holey gold support that prevents cryo-crinkling and reduces beam-induced motion of soft specimens, building on the previously introduced all-gold support. The composite holey gold support for high-resolution cryogenic electron microscopy of soft crystalline membranes was fabricated in two steps. In the first step, a holey gold film was transferred on top of a molybdenum grid. In the second step, a continuous thin carbon film was transferred onto the holey gold film. This support (Au/Mo grid) was used to image crystalline synthetic polymer membranes. The low thermal expansion of Mo is not only expected to avoid cryo-crinkling of the membrane when the grids are cooled to cryogenic temperatures, but it may also act to reduce whatever crinkling existed even before cooling. The Au/Mo grid exhibits excellent performance with specimens tilted to 45°. This is demonstrated by quantifying beam-induced motion and differences in local defocus values. In addition, images of specimens on the Au/Mo grids that are tilted at 45° show high-resolution information of the crystalline membranes that, after lattice-unbending, extends beyond 1.5 Å in the direction perpendicular to the tilt axis.

8.
Biophys J ; 118(3): 708-719, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31952802

RESUMO

Blotting has been the standard technique for preparing aqueous samples for single-particle electron cryo-microscopy for over three decades. This technique removes the excess solution from a transmission electron microscope grid by pressing absorbent filter paper against the specimen before vitrification. However, this standard technique produces vitreous ice with inconsistent thickness from specimen to specimen and from region to region within the same specimen, the reasons for which are not understood. Here, high-speed interference contrast microscopy is used to demonstrate that the irregular pattern of fibers in the filter paper imposes tortuous, highly variable boundaries during the removal of excess liquid from a flat, hydrophilic surface. As a result, aqueous films of nonuniform thickness are formed while the filter paper is pressed against the substrate. This pattern of nonuniform liquid thickness changes again after the filter paper is pulled away, but the thickness still does not become completely uniform. We suggest that similar topographical features of the liquid film are produced during the standard technique used to blot EM grids and that these manifest in nonuniform ice after vitrification. These observations suggest that alternative thinning techniques, which do not rely on direct contact between the filter paper and the grid, may result in more repeatable and uniform sample thicknesses.


Assuntos
Vitrificação , Água , Microscopia Crioeletrônica
9.
Phys Rev Lett ; 124(17): 174801, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32412292

RESUMO

The secular dynamics of a nonrelativistic charged particle in an electromagnetic wave can be described by the ponderomotive potential. Although ponderomotive electron-laser interactions at relativistic velocities are important for emerging technologies from laser-based particle accelerators to laser-enhanced electron microscopy, the effects of special relativity on the interaction have only been studied theoretically. Here, we use a transmission electron microscope to measure the position-dependent phase shift imparted to a relativistic electron wave function when it traverses a standing laser wave. The kinetic energy of the electrons is varied between 80 and 300 keV, and the laser standing wave has a continuous-wave intensity of 175 GW/cm^{2}. In contrast to the nonrelativistic case, we demonstrate that the phase shift depends on both the electron velocity and the wave polarization, confirming the predictions of a quasiclassical theory of the interaction. Remarkably, if the electron's speed is greater than 1/sqrt[2] of the speed of light, the phase shift at the electric field nodes of the wave can exceed that at the antinodes. In this case there exists a polarization such that the phase shifts at the nodes and antinodes are equal, and the electron does not experience Kapitza-Dirac diffraction. Our results thus provide new capabilities for coherent electron beam manipulation.

10.
Nat Methods ; 13(1): 28-32, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26716559

RESUMO

The suddenness with which single-particle cryo-electron microscopy (cryo-EM) has emerged as a method for determining high-resolution structures of biological macromolecules invites the questions, how much better can this technology get, and how fast is that likely to happen? Though we can rightly celebrate the maturation of cryo-EM as a high-resolution structure-determination tool, I believe there still are many developments to look forward to.


Assuntos
Microscopia Crioeletrônica/normas , Substâncias Macromoleculares/química
11.
Artigo em Inglês | MEDLINE | ID: mdl-29867291

RESUMO

It has become clear that the standard cartoon, in which macromolecular particles prepared for electron cryo-microscopy are shown to be surrounded completely by vitreous ice, often is not accurate. In particular, the standard picture does not include the fact that diffusion to the air-water interface, followed by adsorption and possibly denaturation, can occur on the time scale that normally is required to make thin specimens. The extensive literature on interaction of proteins with the air-water interface suggests that many proteins can bind to the interface, either directly or indirectly via a sacrificial layer of already-denatured protein. In the process, the particles of interest can, in some cases, become preferentially oriented, and in other cases they can be damaged and/or aggregated at the surface. Thus, although a number of methods and recipes have evolved for dealing with protein complexes that prove to be difficult, making good cryo-grids can still be a major challenge for each new type of specimen. Recognition that the air-water interface is a very dangerous place to be has inspired work on some novel approaches for preparing cryo-grids. At the moment, two of the most promising ones appear to be: (1) thin and vitrify the specimen much faster than is done currently or (2) immobilize the particles onto a structure-friendly support film so that they cannot diffuse to the air-water interface.

14.
J Struct Biol ; 200(3): 307-313, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28259651

RESUMO

Analysis of images of biotinylated Escherichia coli 70S ribosome particles, bound to streptavidin affinity grids, demonstrates that the image-quality of particles can be predicted by the image-quality of the monolayer crystalline support film. The quality of the Thon rings is also a good predictor of the image-quality of particles, but only when images of the streptavidin crystals extend to relatively high resolution. When the estimated resolution of streptavidin was 5Å or worse, for example, the ribosomal density map obtained from 22,697 particles went to only 9.5Å, while the resolution of the map reached 4.0Å for the same number of particles, when the estimated resolution of streptavidin crystal was 4Å or better. It thus is easy to tell which images in a data set ought to be retained for further work, based on the highest resolution seen for Bragg peaks in the computed Fourier transforms of the streptavidin component. The refined density map obtained from 57,826 particles obtained in this way extended to 3.6Å, a marked improvement over the value of 3.9Å obtained previously from a subset of 52,433 particles obtained from the same initial data set of 101,213 particles after 3-D classification. These results are consistent with the hypothesis that interaction with the air-water interface can damage particles when the sample becomes too thin. Streptavidin monolayer crystals appear to provide a good indication of when that is the case.


Assuntos
Microscopia Crioeletrônica/métodos , Ribossomos/química , Estreptavidina/química , Microscopia Crioeletrônica/instrumentação , Escherichia coli , Processamento de Imagem Assistida por Computador
15.
Biophys J ; 110(4): 749-55, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26386606

RESUMO

Poor consistency of the ice thickness from one area of a cryo-electron microscope (cryo-EM) specimen grid to another, from one grid to the next, and from one type of specimen to another, motivates a reconsideration of how to best prepare suitably thin specimens. Here we first review the three related topics of wetting, thinning, and stability against dewetting of aqueous films spread over a hydrophilic substrate. We then suggest that the importance of there being a surfactant monolayer at the air-water interface of thin, cryo-EM specimens has been largely underappreciated. In fact, a surfactant layer (of uncontrolled composition and surface pressure) can hardly be avoided during standard cryo-EM specimen preparation. We thus suggest that better control over the composition and properties of the surfactant layer may result in more reliable production of cryo-EM specimens with the desired thickness.


Assuntos
Microscopia Crioeletrônica , Tensoativos/química , Ar , Estabilidade de Medicamentos , Elétrons , Pressão , Solventes/química , Volatilização , Água/química , Molhabilidade
16.
J Struct Biol ; 195(2): 238-244, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27320699

RESUMO

We describe a rapid and convenient method of growing streptavidin (SA) monolayer crystals directly on holey-carbon EM grids. As expected, these SA monolayer crystals retain their biotin-binding function and crystalline order through a cycle of embedding in trehalose and, later, its removal. This fact allows one to prepare, and store for later use, EM grids on which SA monolayer crystals serve as an affinity substrate for preparing specimens of biological macromolecules. In addition, we report that coating the lipid-tail side of trehalose-embedded monolayer crystals with evaporated carbon appears to improve the consistency with which well-ordered, single crystals are observed to span over entire, 2µm holes of the support films. Randomly biotinylated 70S ribosomes are used as a test specimen to show that these support films can be used to obtain a high-resolution cryo-EM structure.


Assuntos
Biotinilação/métodos , Cristalização/métodos , Ribossomos/ultraestrutura , Estreptavidina/química , Biotina/química , Carbono/química , Microscopia Crioeletrônica , Processamento de Imagem Assistida por Computador , Microscopia Eletrônica/métodos , Ribossomos/química , Manejo de Espécimes , Especificidade por Substrato
17.
J Biol Chem ; 289(15): 10411-10418, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24567335

RESUMO

VP1 is the major coat protein of murine polyomavirus and forms virus-like particles (VLPs) in vitro. VLPs consist of 72 pentameric VP1 subunits held together by a terminal clamp structure that is further stabilized by disulfide bonds and chelation of calcium ions. Yeast-derived VLPs (yVLPs) assemble intracellularly in vivo during recombinant protein production. These in vivo assembled yVLPs differ in several properties from VLPs assembled in vitro from bacterially produced pentamers. We found several intermolecular disulfide linkages in yVLPs involving 5 of the 6 cysteines of VP1 (Cys(115)-Cys(20), Cys(12)-Cys(20), Cys(16)-Cys(16), Cys(12)/ Cys(16)-Cys(115), and Cys(274)-Cys(274)), indicating a highly coordinated disulfide network within the in vivo assembled particles involving the N-terminal region of VP1. Cryoelectron microscopy revealed structured termini not resolved in the published crystal structure of the bacterially expressed VLP that appear to clamp the pentameric subunits together. These structural features are probably the reason for the observed higher stability of in vivo assembled yVLPs compared with in vitro assembled bacterially expressed VLPs as monitored by increased thermal stability, higher resistance to trypsin cleavage, and a higher activation enthalpy of the disassembly reaction. This high stability is decreased following disassembly of yVLPs and subsequent in vitro reassembly, suggesting a role for cellular components in optimal assembly.


Assuntos
Proteínas do Capsídeo/química , Dissulfetos/química , Polyomavirus/química , Sequência de Aminoácidos , Capsídeo/química , Reagentes de Ligações Cruzadas/química , Microscopia Crioeletrônica , Cisteína/química , Temperatura Alta , Cinética , Kluyveromyces/metabolismo , Dados de Sequência Molecular , Peptídeos/química , Polyomavirus/ultraestrutura , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Ribonuclease Pancreático/química , Tripsina/química , Ultracentrifugação , Vírion/química , Montagem de Vírus
18.
J Struct Biol ; 187(1): 66-75, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24694675

RESUMO

Tilted electron microscope images are routinely collected for an ab initio structure reconstruction as a part of the Random Conical Tilt (RCT) or Orthogonal Tilt Reconstruction (OTR) methods, as well as for various applications using the "free-hand" procedure. These procedures all require identification of particle pairs in two corresponding images as well as accurate estimation of the tilt-axis used to rotate the electron microscope (EM) grid. Here we present a computational approach, PCT (particle correspondence from tilted pairs), based on tilt-invariant context and projection matching that addresses both problems. The method benefits from treating the two problems as a single optimization task. It automatically finds corresponding particle pairs and accurately computes tilt-axis direction even in the cases when EM grid is not perfectly planar.


Assuntos
IMP Desidrogenase/ultraestrutura , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Imageamento Tridimensional/estatística & dados numéricos , Ribossomos/ultraestrutura , Microscopia Crioeletrônica/instrumentação , Desulfovibrio vulgaris/química , Escherichia coli/química , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos
19.
Curr Opin Struct Biol ; 86: 102805, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38531188

RESUMO

Although defocus can be used to generate partial phase contrast in transmission electron microscope images, cryo-electron microscopy (cryo-EM) can be further improved by the development of phase plates which increase contrast by applying a phase shift to the unscattered part of the electron beam. Many approaches have been investigated, including the ponderomotive interaction between light and electrons. We review the recent successes achieved with this method in high-resolution, single-particle cryo-EM. We also review the status of using pulsed or near-field enhanced laser light as alternatives, along with approaches that use scanning transmission electron microscopy (STEM) with a segmented detector rather than a phase plate.


Assuntos
Microscopia Crioeletrônica , Microscopia Crioeletrônica/métodos , Microscopia de Contraste de Fase/métodos
20.
ArXiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38344223

RESUMO

Although defocus can be used to generate partial phase contrast in transmission electron microscope images, cryo-electron microscopy (cryo-EM) can be further improved by the development of phase plates which increase contrast by applying a phase shift to the unscattered part of the electron beam. Many approaches have been investigated, including the ponderomotive interaction between light and electrons. We review the recent successes achieved with this method in high-resolution, single-particle cryo-EM. We also review the status of using pulsed or near-field enhanced laser light as alternatives, along with approaches that use scanning transmission electron microscopy (STEM) with a segmented detector rather than a phase plate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA