Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37762097

RESUMO

The determination of RNA integrity is a critical quality assessment tool for gene expression studies where the experiment's success is highly dependent on the sample quality. Since its introduction in 1999, the gold standard in the scientific community has been the Agilent 2100 Bioanalyzer's RNA integrity number (RIN), which uses a 1-10 value system, from 1 being the most degraded, to 10 being the most intact. In 2015, Agilent launched 4200 TapeStation's RIN equivalent, and reported a strong correlation of r2 of 0.936 and a median error < ±0.4 RIN units. To evaluate this claim, we compared the Agilent 4200 TapeStation's RIN equivalent (RINe) and DV200 to the Agilent 2100 Bioanalyzer's RIN for 183 parallel RNA samples. In our study, using RNA from a total of 183 human postmortem brain samples, we found that the RIN and RINe values only weakly correlate, with an r2 of 0.393 and an average difference of 3.2 RIN units. DV200 also only weakly correlated with RIN (r2 of 0.182) and RINe (r2 of 0.347). Finally, when applying a cut-off value of 6.5 for both metrics, we found that 95.6% of samples passed with RIN, while only 23.5% passed with RINe. Our results suggest that even though RIN (Bioanalyzer) and RINe (TapeStation) use the same 1-10 value system, they should not be used interchangeably, and cut-off values should be calculated independently.


Assuntos
Benchmarking , Encéfalo , Humanos , RNA
2.
Learn Mem ; 29(9): 265-273, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36206386

RESUMO

Hypertension is a risk factor for neurodegenerative disorders involving inflammation and inflammatory cytokine-producing brain cells (microglia and astrocytes) in the hippocampus and medial prefrontal cortex (mPFC). Here we investigated the effect of slow-pressor angiotensin II (AngII) on gliosis in the hippocampus and mPFC of young adult (2-mo-old) male and female mice. In males, AngII induced hypertension, and this resulted in an increase in the density of the astrocyte marker glial fibrillary acidic protein (GFAP) in the subgranular hilus and a decrease in the density of the microglial marker ionized calcium binding adapter molecule (Iba-1) in the CA1 region. Females infused with AngII did not show hypertension but, significantly, showed alterations in hippocampal glial activation. Compared with vehicle, AngII-infused female mice had an increased density of Iba-1 in the dentate gyrus and CA2/3a region. Like males, females infused with AngII exhibited decreased Iba-1 in the CA1 region. Neither male nor female mice showed differences in GFAP or Iba-1 in the mPFC following AngII infusion. These results demonstrate that the hippocampus is particularly vulnerable to AngII in young adulthood. Differences in gonadal hormones or the sensitivity to AngII hypertension may account for divergences in GFAP and Iba-1 in males and females.


Assuntos
Angiotensina II , Hipertensão , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Animais , Astrócitos/metabolismo , Biomarcadores/metabolismo , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio , Citocinas/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/metabolismo , Masculino , Camundongos
3.
J Neurosci ; 41(6): 1349-1362, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303682

RESUMO

There are significant neurogenic and inflammatory influences on blood pressure, yet the role played by each of these processes in the development of hypertension is unclear. Tumor necrosis factor α (TNFα) has emerged as a critical modulator of blood pressure and neural plasticity; however, the mechanism by which TNFα signaling contributes to the development of hypertension is uncertain. We present evidence that following angiotensin II (AngII) infusion the TNFα type 1 receptor (TNFR1) plays a key role in heightened glutamate signaling in the hypothalamic paraventricular nucleus (PVN), a key central coordinator of blood pressure control. Fourteen day administration of a slow-pressor dose of AngII in male mice was associated with transcriptional and post-transcriptional (increased plasma membrane affiliation) regulation of TNFR1 in the PVN. Further, TNFR1 was shown to be critical for elevated NMDA-mediated excitatory currents in sympathoexcitatory PVN neurons following AngII infusion. Finally, silencing PVN TNFR1 prevented the increase in systolic blood pressure induced by AngII. These findings indicate that TNFR1 modulates a cellular pathway involving an increase in NMDA-mediated currents in the PVN following AngII infusion, suggesting a mechanism whereby TNFR1 activation contributes to hypertension via heightened hypothalamic glutamate-dependent signaling.SIGNIFICANCE STATEMENT Inflammation is critical for the emergence of hypertension, yet the mechanisms by which inflammatory mediators contribute to this dysfunction are not clearly defined. We show that tumor necrosis factor α receptor 1 (TNFR1) in the paraventricular hypothalamic nucleus (PVN), a critical neuroregulator of cardiovascular function, plays an important role in the development of hypertension in mice. In the PVN, TNFR1 expression and plasma membrane localization are upregulated during hypertension induced by angiotensin II (AngII). Further, TNFR1 activation was essential for NMDA signaling and the heightening NMDA currents during hypertension. Finally, TNFR1 silencing in the PVN inhibits elevated blood pressure induced by AngII. These results point to a critical role for hypothalamic TNFR1 signaling in hypertension.


Assuntos
Angiotensina II/toxicidade , Ácido Glutâmico/metabolismo , Hipertensão/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais/fisiologia , Animais , Hipertensão/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , N-Metilaspartato/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos
4.
J Neurosci ; 41(24): 5190-5205, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33941651

RESUMO

Hypertension susceptibility in women increases at the transition to menopause, termed perimenopause, a state characterized by erratic estrogen fluctuation and extended hormone cycles. Elucidating the role of estrogen signaling in the emergence of hypertension during perimenopause has been hindered by animal models that are confounded by abrupt estrogen cessation or effects of aging. In the present study, accelerated ovarian failure (AOF) in estrogen receptor ß (ERß) reporter mice was induced by 4-vinylcyclohexene diepoxide in young mice to model early-stage ovarian failure (peri-AOF) characteristic of peri-menopause. It was found that administering ERß agonists suppressed elevated blood pressure in a model of neurogenic hypertension induced by angiotensin II (AngII) in peri-AOF, but not in age-matched male mice. It was also found that ERß agonist administration in peri-AOF females, but not males, suppressed the heightened NMDAR signaling and reactive oxygen production in ERß neurons in the hypothalamic paraventricular nucleus (PVN), a critical neural regulator of blood pressure. It was further shown that deleting ERß in the PVN of gonadally intact females produced a phenotype marked by a sensitivity to AngII hypertension. These results suggest that ERß signaling in the PVN plays an important role in blood pressure regulation in female mice and contributes to hypertension susceptibility in females at an early stage of ovarian failure comparable to human perimenopause.


Assuntos
Receptor beta de Estrogênio/metabolismo , Hipertensão/metabolismo , Plasticidade Neuronal/fisiologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Perimenopausa/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Hipertensão/etiologia , Camundongos , Camundongos Endogâmicos C57BL
5.
J Neurosci ; 37(49): 11894-11911, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29089442

RESUMO

Exposure to cocaine-associated contextual cues contributes significantly to relapse. Extinction of these contextual associations, which involves a new form of learning, reduces cocaine-seeking behavior; however, the molecular mechanisms underlying this process remain largely unknown. We report that extinction, but not acquisition, of cocaine conditioned place preference (CPP) in male mice increased Cav1.2 L-type Ca2+ channel mRNA and protein in postsynaptic density (PSD) fractions of the hippocampus, a brain region involved in drug-context associations. Moreover, viral-mediated deletion of Cav1.2 in the dorsal hippocampus attenuated extinction of cocaine CPP. Molecular studies examining downstream Cav1.2 targets revealed that extinction recruited calcium/calmodulin (Ca2+/CaMK)-dependent protein kinase II (CaMKII) to the hippocampal PSD. This occurred in parallel with an increase in phosphorylation of the AMPA GluA1 receptor subunit at serine 831 (S831), a CaMKII site, along with an increase in total PSD GluA1. The necessity of S831 GluA1 was further demonstrated by the lack of extinction in S831A GluA1 phosphomutant mice. Of note hippocampal GluA1 levels remained unaltered at the PSD, but were reduced near the PSD and at perisynaptic sites of dendritic spines in extinction-resistant S831A mutant mice. Finally, conditional knock-out of Cav1.2 in dopamine D1 receptor (D1R)-expressing cells resulted in attenuation of cocaine CPP extinction and lack of extinction-dependent changes in hippocampal PSD CaMKII expression and S831 GluA1 phosphorylation. In summary, we demonstrate an essential role for the hippocampal Cav1.2/CaMKII/S831 GluA1 pathway in cocaine CPP extinction, with data supporting contribution of hippocampal D1R-expressing cells in this process. These findings demonstrate a novel role for Cav1.2 channels in extinction of contextual cocaine-associated memories.SIGNIFICANCE STATEMENT Continued drug-seeking behavior, a defining characteristic of cocaine addiction, can be precipitated by contextual cues, yet the molecular mechanisms required for extinction of these context-specific memories remain poorly understood. Here, we have uncovered a novel and selective role of the Cav1.2 L-type Ca2+ channel and its downstream signaling pathway in the hippocampus that mediate extinction of cocaine conditioned place preference (CPP). We additionally provide evidence that supports a role of Cav1.2 within dopamine D1 receptor-expressing cells of the hippocampus for extinction of cocaine CPP. Therefore, these findings reveal a previously unknown role of Cav1.2 channels within the hippocampus and in D1 receptor-expressing cells in extinction of cocaine-associated memories, providing a framework for further exploration of mechanisms underlying extinction of cocaine-seeking behavior.


Assuntos
Canais de Cálcio Tipo L/fisiologia , Cocaína/administração & dosagem , Extinção Psicológica/fisiologia , Hipocampo/metabolismo , Memória/fisiologia , Receptores de Dopamina D1/biossíntese , Animais , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Extinção Psicológica/efeitos dos fármacos , Expressão Gênica , Hipocampo/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Dopamina D1/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Método Simples-Cego
6.
Neuroendocrinology ; 104(3): 239-256, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27078860

RESUMO

Hypertension in male and aging female rodents is associated with glutamate-dependent plasticity in the hypothalamus, but existing models have failed to capture distinct transitional menopausal phases that could have a significant impact on the synaptic plasticity and emergent hypertension. In rodents, accelerated ovarian failure (AOF) induced by systemic injection of 4-vinylcyclohexane diepoxide mimics the estrogen fluctuations seen in human menopause including the perimenopause transition (peri-AOF) and postmenopause (post-AOF). Thus, we used the mouse AOF model to determine the impact of slow-pressor angiotensin II (AngII) administration on blood pressure and on the subcellular distribution of obligatory N-methyl-D-aspartate (NMDA) receptor GluN1 subunits in the paraventricular hypothalamic nucleus (PVN), a key estrogen-responsive cardiovascular regulatory area. Estrogen-sensitive neuronal profiles were identified in mice expressing enhanced green fluorescent protein under the promoter for estrogen receptor (ER) ß, a major ER in the PVN. Slow-pressor AngII increased arterial blood pressure in mice at peri- and post-AOF time points. In control oil-injected (nonhypertensive) mice, AngII decreased the total number of GluN1 in ERß-containing PVN dendrites. In contrast, AngII resulted in a reapportionment of GluN1 from the cytoplasm to the plasma membrane of ERß-containing PVN dendrites in peri-AOF mice. Moreover, in post-AOF mice, AngII increased total GluN1, dendritic size and radical production in ERß-containing neurons. These results indicate that unique patterns of hypothalamic glutamate receptor plasticity and dendritic structure accompany the elevated blood pressure in peri- and post-AOF time points. Our findings suggest the possibility that distinct neurobiological processes are associated with the increased blood pressure during perimenopausal and postmenopausal periods.


Assuntos
Hipertensão , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Doenças Ovarianas/etiologia , Núcleo Hipotalâmico Paraventricular/patologia , Receptores de Estrogênio/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Angiotensina II/toxicidade , Animais , Pressão Sanguínea/efeitos dos fármacos , Cicloexenos/toxicidade , Modelos Animais de Doenças , Ciclo Estral/efeitos dos fármacos , Ciclo Estral/genética , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipertensão/induzido quimicamente , Hipertensão/complicações , Hipertensão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Imunoeletrônica , Neurônios/ultraestrutura , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/ultraestrutura , Espécies Reativas de Oxigênio/metabolismo , Receptores de Estrogênio/genética , Compostos de Vinila/toxicidade
7.
J Neurosci ; 35(26): 9558-67, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26134639

RESUMO

Hypertension induced by angiotensin II (Ang II) is associated with glutamate-dependent dysregulation of the hypothalamic paraventricular nucleus (PVN). Many forms of glutamate-dependent plasticity are mediated by NMDA receptor GluN1 subunit expression and the distribution of functional receptor to the plasma membrane of dendrites. Here, we use a combined ultrastructural and functional analysis to examine the relationship between PVN NMDA receptors and the blood pressure increase induced by chronic infusion of a low dose of Ang II. We report that the increase in blood pressure produced by a 2 week administration of a subpressor dose of Ang II results in an elevation in plasma membrane GluN1 in dendrites of PVN neurons in adult male mice. The functional implications of these observations are further demonstrated by the finding that GluN1 deletion in PVN neurons attenuated the Ang II-induced increases in blood pressure. These results indicate that NMDA receptor plasticity in PVN neurons significantly contributes to the elevated blood pressure mediated by Ang II.


Assuntos
Angiotensina II/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/genética , Proteínas do Tecido Nervoso/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Análise de Variância , Animais , Lateralidade Funcional , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Imunoeletrônica , N-Metilaspartato/farmacologia , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Neurônios/ultraestrutura , Óxido Nítrico Sintase Tipo I/metabolismo , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/ultraestrutura , Pletismografia , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Vasoconstritores
8.
Synapse ; 67(10): 692-704, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23564315

RESUMO

Within the amygdala, AMPA receptors expressing the AMPA-GluR1 (GluR1) subunit play an important role in basal glutamate signaling as well as behaviors associated with exposure to drugs of abuse like opiates. Although the ultrastructural location of GluR1 is an important functional feature of this protein, the basal distribution of GluR1, as well as its sensitivity to acute morphine, has never been characterized in the mouse central nucleus of the amygdala (CeA). Electron microscopic immunocytochemistry employing visually distinct gold and peroxidase markers was used to explore the distribution of GluR1 and its relationship with the mu-opioid receptor (µOR) in the mouse CeA under basal conditions and after morphine. We also looked at the effect of morphine on other glutamate receptor subunits, including AMPA-GluR2 (GluR2) and NMDA-NR1 (NR1). In opiate naive animals, GluR1 and µOR were present in diverse populations of neuronal profiles, but mainly in somatodendritic structures that expressed exclusive labeling for either antigen, as well as those co-expressing both proteins. Compared to saline treated animals, mice given morphine showed significant differences in the subcellular location of GluR1 in dendrites without co-expression of µOR. Although GluR2 also showed similar changes in non-µOR expressing dendrites, contrasting effects were seen in GluR2 and µOR co-expressing profiles. These results provide the ultrastructural basis for basal interactions involving the modulation of GluR1 or µOR activity in the mouse CeA. Further, they indicate that the subcellular distribution of GluR1 is modified by acute opiates in a manner that compares, as well as contrasts, with GluR2.


Assuntos
Tonsila do Cerebelo/metabolismo , Dendritos/metabolismo , Morfina/farmacologia , Receptores de AMPA/metabolismo , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Dendritos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Subunidades Proteicas/metabolismo , Transporte Proteico , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Opioides mu/metabolismo
9.
Synapse ; 67(6): 265-79, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23345061

RESUMO

The nucleus accumbens (Acb) contains subpopulations of neurons defined by their receptor content and potential involvement in sensorimotor gating and other behaviors that are dysfunctional in schizophrenia. In Acb neurons, the NMDA NR1 (NR1) subunit is coexpressed not only with the dopamine D1 receptor (D1R), but also with the µ-opioid receptor (µ-OR), which mediates certain behaviors that are adversely impacted by schizophrenia. The NMDA-NR1 subunit has been suggested to play a role in the D1R trafficking and behavioral dysfunctions resulting from systemic administration of apomorphine, a D1R and dopamine D2 receptor agonist that impacts prepulse inhibition to auditory-evoked startle (AS). Together, this evidence suggests that the NMDA receptor may regulate D1R trafficking in Acb neurons, including those expressing µ-OR, in animals exposed to auditory startle and apomorphine. We tested this hypothesis by combining spatial-temporal gene deletion technology, dual labeling immunocytochemistry, and behavioral analysis. Deleting NR1 in Acb neurons prevented the increase in the dendritic density of plasma membrane D1Rs in single D1R and dual (D1R and µ-OR) labeled dendrites in the Acb in response to apomorphine and AS. Deleting NR1 also attenuated the decrease in AS induced by apomorphine. In the absence of apomorphine and startle, deletion of Acb NR1 diminished social interaction, without affecting novel object recognition, or open field activity. These results suggest that NR1 expression in the Acb is essential for apomorphine-induced D1R surface trafficking, as well as auditory startle and social behaviors that are impaired in multiple psychiatric disorders.


Assuntos
Apomorfina/farmacologia , Proteínas de Transporte/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Núcleo Accumbens/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Filtro Sensorial/genética , Animais , Proteínas de Transporte/genética , Membrana Celular/metabolismo , Dendritos/metabolismo , Deleção de Genes , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Núcleo Accumbens/citologia , Núcleo Accumbens/fisiologia , Reconhecimento Fisiológico de Modelo , Transporte Proteico/genética , Receptores de N-Metil-D-Aspartato/genética , Receptores Opioides mu/metabolismo , Comportamento Social
10.
Front Aging Neurosci ; 15: 1280218, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035277

RESUMO

Dementia is often characterized by age-dependent cerebrovascular pathology, neuroinflammation, and cognitive deficits with notable sex differences in risk, disease onset, progression and severity. Women bear a disproportionate burden of dementia, and the onset of menopause (i.e., perimenopause) may be a critical period conferring increased susceptibility. However, the contribution of early ovarian decline to the neuroinflammatory processes associated with cerebrovascular dementia risks, particularly at the initial stages of pathology that may be more amenable to proactive intervention, is unknown. To better understand the influence of early ovarian failure on dementia-associated neuroinflammation we developed a model of perimenopausal cerebral amyloid angiopathy (CAA), an important contributor to dementia. For this, accelerated ovarian failure (AOF) was induced by 4-vinylcyclohexene diepoxide (VCD) treatment to isolate early-stage ovarian failure comparable to human perimenopause (termed "peri-AOF") in transgenic SWDI mice expressing human vasculotropic mutant amyloid beta (Aß) precursor protein, that were also tested at an early stage of amyloidosis. We found that peri-AOF SWDI mice showed increased astrocyte activation accompanied by elevated Aß in select regions of the hippocampus, a brain system involved in learning and memory that is severely impacted during dementia. However, although SWDI mice showed signs of increased hippocampal microglial activation and impaired cognitive function, this was not further affected by peri-AOF. In sum, these results suggest that elevated dysfunction of key elements of the neurovascular unit in select hippocampal regions characterizes the brain pathology of mice at early stages of both CAA and AOF. However, neurovascular unit pathology may not yet have passed a threshold that leads to further behavioral compromise at these early periods of cerebral amyloidosis and ovarian failure. These results are consistent with the hypothesis that the hormonal dysregulation associated with perimenopause onset represents a stage of emerging vulnerability to dementia-associated neuropathology, thus providing a selective window of opportunity for therapeutic intervention prior to the development of advanced pathology that has proven difficult to repair or reverse.

11.
medRxiv ; 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37461632

RESUMO

Determining RNA integrity is a critical quality assessment tool for gene expression studies where the experiment's success is highly dependent on sample quality. Since its introduction in 1999, the gold standard in the scientific community has been the Agilent 2100 Bioanalyzer's RNA Integrity Number (RIN) which uses a 1-10 value system with 1 being the most degraded to 10 being the most intact. In 2015, Agilent launched the 4200 Tapestation's RIN equivalent and reported a strong correlation of r 2 of 0.936 and median error < ± 0.4 RIN units. To evaluate this claim, we compared the Agilent 4200 Tapestation's RIN equivalent (RINe) and DV200 to the Agilent 2100 Bioanalyzer's RIN for 183 parallel RNA samples. In our study, using RNA from a total of 183 human postmortem brain samples, we found that the RIN and RINe values only weakly correlate with an r 2 of 0.393 and an average difference of 3.2 RIN units. DV200 also only weakly correlated with RIN (r 2 of 0.182) and RINe (r 2 of 0.347). Finally, when applying a cut-off value of 6.5 for both metrics, we found that 95.6% of samples passed with RIN, while only 23.5% passed with RINe. Our results suggest that even though RIN (Bioanalyzer) and RINe (Tapestation) use the same 1-10 value system, they should not be used interchangeably, and cut-off values should be calculated independently.

12.
J Neuropathol Exp Neurol ; 82(6): 457-466, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37071794

RESUMO

Cerebral white matter rarefaction (CWMR) was considered by Binswanger and Alzheimer to be due to cerebral arteriolosclerosis. Renewed attention came with CT and MR brain imaging, and neuropathological studies finding a high rate of CWMR in Alzheimer disease (AD). The relative contributions of cerebrovascular disease and AD to CWMR are still uncertain. In 1181 autopsies by the Arizona Study of Aging and Neurodegenerative Disorders (AZSAND), large-format brain sections were used to grade CWMR and determine its vascular and neurodegenerative correlates. Almost all neurodegenerative diseases had more severe CWMR than the normal control group. Multivariable logistic regression models indicated that Braak neurofibrillary stage was the strongest predictor of CWMR, with additional independently significant predictors including age, cortical and diencephalic lacunar and microinfarcts, body mass index, and female sex. It appears that while AD and cerebrovascular pathology may be additive in causing CWMR, both may be solely capable of this. The typical periventricular pattern suggests that CWMR is primarily a distal axonopathy caused by dysfunction of the cell bodies of long-association corticocortical projection neurons. A consequence of these findings is that CWMR should not be viewed simply as "small vessel disease" or as a pathognomonic indicator of vascular cognitive impairment or vascular dementia.


Assuntos
Doença de Alzheimer , Transtornos Cerebrovasculares , Demência Vascular , Substância Branca , Feminino , Humanos , Substância Branca/patologia , Encéfalo/patologia , Transtornos Cerebrovasculares/complicações , Transtornos Cerebrovasculares/diagnóstico por imagem , Transtornos Cerebrovasculares/patologia , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Demência Vascular/patologia
13.
Am J Physiol Regul Integr Comp Physiol ; 302(9): R1076-83, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22378773

RESUMO

The medial region of the nucleus tractus solitarius (mNTS) is a key brain stem site controlling cardiovascular function, wherein ANG II modulates neuronal L-type Ca(2+) currents via activation of ANG II type 1 receptors (AT(1)R) and production of reactive oxygen species (ROS). ANG II type 2 receptors (AT(2)R) induce production of nitric oxide (NO), which may interact with ROS and modulate AT(1)R signaling. We sought to determine whether AT(2)R-mediated NO production occurs in mNTS neurons and, if so, to elucidate the NO source and the functional interaction with AT(1)R-induced ROS or Ca(2+) influx. Electron microscopic (EM) immunolabeling showed that AT(2)R and neuronal NO synthase (nNOS) are coexpressed in neuronal somata and dendrites receiving synapses in the mNTS. In the presence of the AT(1)R antagonist losartan, ANG II increased NO production in isolated mNTS neurons, an effect blocked by the AT(2)R antagonist PD123319, but not the angiotensin (1-7) antagonist D-Ala. Studies in mNTS neurons of nNOS-null or endothelial NOS (eNOS)-null mice established nNOS as the source of NO. ANG II-induced ROS production was enhanced by PD123319, the NOS inhibitor N(G)-nitro-l-arginine (LNNA), or in nNOS-null mice. Moreover, in the presence of losartan, ANG II reduced voltage-gated L-type Ca(2+) current, an effect blocked by PD123319 or LNNA. We conclude that AT(2)R are closely associated and functionally coupled with nNOS in mNTS neurons. The resulting NO production antagonizes AT(1)R-mediated ROS and dampens L-type Ca(2+) currents. The ensuing signaling changes in the NTS may counteract the deleterious effects of AT(1)R on cardiovascular function.


Assuntos
Canais de Cálcio Tipo L/fisiologia , Cálcio/metabolismo , Ativação do Canal Iônico/fisiologia , Óxido Nítrico/biossíntese , Receptores de Angiotensina/metabolismo , Núcleo Solitário/metabolismo , Animais , Células Cultivadas , Radicais Livres/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Ratos Sprague-Dawley
14.
Neuroscience ; 485: 129-144, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34999197

RESUMO

The hypothalamic paraventricular nucleus (PVN) plays a key role in hypertension, however the signaling pathways that contribute to the adaptability of the PVN during hypertension are uncertain. We present evidence that signaling at the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) GluA1 receptor contributes to increased blood pressure in a model of neurogenic hypertension induced by 14-day slow-pressor angiotensin II (AngII) infusion in male mice. It was found that AngII hypertension was associated with an increase in plasma membrane affiliation of GluA1, but decreased GluA2, in dendritic profiles of PVN neurons expressing the TNFα type 1 receptor, a modulator of AMPA receptor trafficking. The increased plasma membrane GluA1 was paralleled by heightened AMPA currents in PVN-spinal cord projection neurons from AngII-infused male mice. Significantly, elevated AMPA currents in AngII-treated mice were blocked by 1-Naphthyl acetyl spermine trihydrochloride, pointing to the involvement of GluA2-lacking GluA1 receptors in the heightened AMPA signaling in PVN neurons. A further functional role for GluA1 in the PVN was demonstrated by the attenuated hypertensive response following silencing of GluA1 in the PVN of AngII-infused male mice. In female mice, AngII-infusion did not impact blood pressure or plasma membrane localization of GluA1 . Post-translational modifications that increase the plasma membrane localization of AMPA GluA1 and heighten the rapid excitatory signaling actions of glutamate in PVN neurons may serve as a molecular substrate underlying sex differences in hypertension.


Assuntos
Hipertensão , Núcleo Hipotalâmico Paraventricular , Angiotensina II , Animais , Pressão Sanguínea , Feminino , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Masculino , Camundongos , Núcleo Hipotalâmico Paraventricular/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico
15.
Neurochem Int ; 161: 105420, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36170907

RESUMO

Sex differences in the sensitivity to hypertension and inflammatory processes are well characterized but insufficiently understood. In male mice, tumor necrosis factor alpha (TNFα) in the hypothalamic paraventricular nucleus (PVN) contributes to hypertension following slow-pressor angiotensin II (AngII) infusion. However, the role of PVN TNFα in the response to AngII in female mice is unknown. Using a combination of in situ hybridization, high-resolution electron microscopic immunohistochemistry, spatial-temporal gene silencing, and dihydroethidium microfluorography we investigated the influence of AngII on both blood pressure and PVN TNFα signaling in female mice. We found that chronic (14-day) infusion of AngII in female mice did not impact blood pressure, TNFα levels, the expression of the TNFα type 1 receptor (TNFR1), or the subcellular distribution of TNFR1 in the PVN. However, it was shown that blockade of estrogen receptor ß (ERß), a major hypothalamic estrogen receptor, was accompanied by both elevated PVN TNFα and hypertension following AngII. Further, AngII hypertension following ERß blockade was attenuated by inhibiting PVN TNFα signaling by local TNFR1 silencing. It was also shown that ERß blockade in isolated PVN-spinal cord projection neurons (i.e. sympathoexcitatory) heightened TNFα-induced production of NADPH oxidase (NOX2)-mediated reactive oxygen species, molecules that may play a key role in mediating the effect of TNFα in hypertension. These results indicate that ERß contributes to the reduced sensitivity of female mice to hypothalamic inflammatory cytokine signaling and hypertension in response to AngII.


Assuntos
Hipertensão , Núcleo Hipotalâmico Paraventricular , Camundongos , Feminino , Masculino , Animais , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/patologia , Núcleo Hipotalâmico Paraventricular/ultraestrutura , Angiotensina II/efeitos adversos , Angiotensina II/metabolismo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/efeitos adversos , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Neurônios/metabolismo , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Pressão Sanguínea
16.
J Neuropathol Exp Neurol ; 81(3): 158-171, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35191506

RESUMO

The spread of neurofibrillary tau pathology in Alzheimer disease (AD) mostly follows a stereotypical pattern of topographical progression but atypical patterns associated with interhemispheric asymmetry have been described. Because histopathological studies that used bilateral sampling are limited, this study aimed to assess interhemispheric tau pathology differences and the presence of topographically atypical cortical spreading patterns. Immunohistochemical staining for detection of tau pathology was performed in 23 regions of interest in 57 autopsy cases comparing bilateral cortical regions and hemispheres. Frequent mild (82% of cases) and occasional moderate (32%) interhemispheric density discrepancies were observed, whereas marked discrepancies were uncommon (7%) and restricted to occipital regions. Left and right hemispheric tau pathology dominance was observed with similar frequencies, except in Braak Stage VI that favored a left dominance. Interhemispheric Braak stage differences were observed in 16% of cases and were more frequent in advanced (IV-VI) versus early (I-III) stages. One atypical lobar topographical pattern in which occipital tau pathology density exceeded frontal lobe scores was identified in 4 cases favoring a left dominant asymmetry. We speculate that asymmetry and atypical topographical progression patterns may be associated with atypical AD clinical presentations and progression characteristics, which should be tested by comprehensive clinicopathological correlations.


Assuntos
Doença de Alzheimer , Tauopatias , Doença de Alzheimer/patologia , Humanos , Emaranhados Neurofibrilares/patologia , Tomografia por Emissão de Pósitrons , Tauopatias/patologia , Proteínas tau
17.
J Neuropathol Exp Neurol ; 81(9): 666-695, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35818336

RESUMO

Brains of 42 COVID-19 decedents and 107 non-COVID-19 controls were studied. RT-PCR screening of 16 regions from 20 COVID-19 autopsies found SARS-CoV-2 E gene viral sequences in 7 regions (2.5% of 320 samples), concentrated in 4/20 subjects (20%). Additional screening of olfactory bulb (OB), amygdala (AMY) and entorhinal area for E, N1, N2, RNA-dependent RNA polymerase, and S gene sequences detected one or more of these in OB in 8/21 subjects (38%). It is uncertain whether these RNA sequences represent viable virus. Significant histopathology was limited to 2/42 cases (4.8%), one with a large acute cerebral infarct and one with hemorrhagic encephalitis. Case-control RNAseq in OB and AMY found more than 5000 and 700 differentially expressed genes, respectively, unrelated to RT-PCR results; these involved immune response, neuronal constituents, and olfactory/taste receptor genes. Olfactory marker protein-1 reduction indicated COVID-19-related loss of OB olfactory mucosa afferents. Iba-1-immunoreactive microglia had reduced area fractions in cerebellar cortex and AMY, and cytokine arrays showed generalized downregulation in AMY and upregulation in blood serum in COVID-19 cases. Although OB is a major brain portal for SARS-CoV-2, COVID-19 brain changes are more likely due to blood-borne immune mediators and trans-synaptic gene expression changes arising from OB deafferentation.


Assuntos
COVID-19 , SARS-CoV-2 , Encéfalo , Expressão Gênica , Humanos , Imunidade
18.
J Comp Neurol ; 529(9): 2283-2310, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33341960

RESUMO

Within the hypothalamic paraventricular nucleus (PVN), estrogen receptor (ER) ß and other gonadal hormone receptors play a role in central cardiovascular processes. However, the influence of sex and age on the cellular and subcellular relationships of ERß with ERα, G-protein ER (GPER1), as well as progestin and androgen receptors (PR and AR) in the PVN is uncertain. In young (2- to 3-month-old) females and males, ERß-enhanced green fluorescent protein (EGFP) containing neurons were approximately four times greater than ERα-labeled and PR-labeled nuclei in the PVN. In subdivisions of the PVN, young females, compared to males, had: (1) more ERß-EGFP neurons in neuroendocrine rostral regions; (2) fewer ERα-labeled nuclei in neuroendocrine and autonomic projecting medial subregions; and (3) more ERα-labeled nuclei in an autonomic projecting caudal region. In contrast, young males, compared to females, had approximately 20 times more AR-labeled nuclei, which often colocalized with ERß-EGFP in neuroendocrine (approximately 70%) and autonomic (approximately 50%) projecting subregions. Ultrastructurally, in soma and dendrites, PVN ERß-EGFP colocalized primarily with extranuclear AR (approximately 85% soma) and GPER1 (approximately 70% soma). Aged (12- to 24-month-old) males had more ERß-EGFP neurons in a rostral neuroendocrine subregion compared to aged females and females with accelerated ovarian failure (AOF) and in a caudal autonomic subregion compared to post-AOF females. Late-aged (18- to 24-month-old) females compared to early-aged (12- to 14-month-old) females and AOF females had fewer AR-labeled nuclei in neuroendrocrine and autonomic projecting subregions. These findings indicate that gonadal steroids may directly and indirectly influence PVN neurons via nuclear and extranuclear gonadal hormone receptors in a sex-specific manner.


Assuntos
Receptor beta de Estrogênio/biossíntese , Hormônios Esteroides Gonadais/biossíntese , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Caracteres Sexuais , Fatores Etários , Animais , Receptor beta de Estrogênio/análise , Receptor beta de Estrogênio/ultraestrutura , Feminino , Hormônios Esteroides Gonadais/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/ultraestrutura , Núcleo Hipotalâmico Paraventricular/química , Núcleo Hipotalâmico Paraventricular/ultraestrutura , Receptores Androgênicos/análise , Receptores Androgênicos/biossíntese , Receptores Androgênicos/ultraestrutura , Receptores Acoplados a Proteínas G/análise , Receptores Acoplados a Proteínas G/biossíntese , Receptores Acoplados a Proteínas G/ultraestrutura
19.
medRxiv ; 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33791728

RESUMO

Stroke is one of the most serious complications of Covid-19 disease but it is still unclear whether stroke is more common with Covid-19 pneumonia as compared to non-Covid-19 pneumonia. We investigated the concurrence rate of autopsy-confirmed acute brain ischemia, acute brain infarction and acute brain hemorrhage with autopsy-proven acute non-Covid pneumonia in consecutive autopsies in the Arizona Study of Aging and Neurodegenerative Disorders (AZSAND), a longitudinal clinicopathological study of normal aging and neurodegenerative diseases. Of 691 subjects with a mean age of 83.4 years, acute pneumonia was histopathologically diagnosed in 343 (49.6%); the concurrence rates for histopathologically-confirmed acute ischemia, acute infarction or subacute infarction was 14% and did not differ between pneumonia and non-pneumonia groups while the rates of acute brain hemorrhage were 1.4% and 2.0% of those with or without acute pneumonia, respectively. In comparison, in reviews of Covid-19 publications, reported clinically-determined rates of acute brain infarction range from 0.5% to 20% while rates of acute brain hemorrhage range from 0.13% to 2%. In reviews of Covid-19 autopsy studies, concurrence rates for both acute brain infarction and acute brain hemorrhage average about 10%. Covid-19 pneumonia and non-Covid-19 pneumonia may have similar risks tor concurrent acute brain infarction and acute brain hemorrhage when pneumonia is severe enough to cause death. Additionally, acute brain ischemia, infarction or hemorrhage may not be more common in subjects dying of acute pneumonia than in subjects dying without acute pneumonia.

20.
medRxiv ; 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34545375

RESUMO

In this study we conducted RNA sequencing on two brain regions (olfactory bulb and amygdala) from subjects who died from COVID-19 or who died of other causes. We found several-fold more transcriptional changes in the olfactory bulb than in the amygdala, consistent with our own work and that of others indicating that the olfactory bulb may be the initial and most common brain region infected. To some extent our results converge with pseudotime analysis towards common processes shared between the brain regions, possibly induced by the systemic immune reaction following SARS-CoV-2 infection. Changes in amygdala emphasized upregulation of interferon-related neuroinflammation genes, as well as downregulation of synaptic and other neuronal genes, and may represent the substrate of reported acute and subacute COVID-19 neurological effects. Additionally, and only in olfactory bulb, we observed an increase in angiogenesis and platelet activation genes, possibly associated with microvascular damages induced by neuroinflammation. Through coexpression analysis we identified two key genes (CAMK2B for the synaptic neuronal network and COL1A2 for the angiogenesis/platelet network) that might be interesting potential targets to reverse the effects induced by SARS-CoV-2 infection. Finally, in olfactory bulb we detected an upregulation of olfactory and taste genes, possibly as a compensatory response to functional deafferentation caused by viral entry into primary olfactory sensory neurons. In conclusion, we were able to identify transcriptional profiles and key genes involved in neuroinflammation, neuronal reaction and olfaction induced by direct CNS infection and/or the systemic immune response to SARS-CoV-2 infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA