Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mycologia ; 104(4): 793-803, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22466798

RESUMO

The soil fungus Rhizoctonia solani produces phytotoxic phenylacetic acid (PAA) and hydroxy (OH-) and methoxy (MeO-) derivatives of PAA. However, limited information is available on the specific role that these compounds play in the development of Rhizoctonia disease symptoms and concentration(s) required to induce a host response. Reports that PAA inhibits the growth of R. solani conflict with the established ability of the fungus to produce and metabolize PAA. Experiments were conducted to clarify the role of the PAA metabolic complex in Rhizoctonia disease. In this study the concentration of PAA and derivatives required to induce tomato root necrosis and stem canker, in the absence of the fungus, and the concentration that inhibits mycelial growth of R. solani were determined. The effect of exogenous PAA and derivatives of PAA on tomato seedling growth also was investigated. Growth of tomato seedlings in medium containing 0.1-7.5 mM PAA and derivatives induced necrosis of up to 85% of root system. Canker development resulted from injection of tomato seedling stems with 7.5 mM PAA, 3-OH-PAA, or 3-MeO-PAA. PAA in the growth medium reduced R. solani biomass, with 50% reduction observed at 7.5 mM. PAA, and derivatives were quantified from the culture medium of 14 isolates of R. solani belonging to three distinct anastomosis groups by GC-MS. The quantities ranged from below the limit of detection to 678 nM, below the concentrations experimentally determined to be phytotoxic. Correlation analyses revealed that isolates of R. solani that produced high PAA and derivatives in vitro also caused high mortality on tomato seedlings. The results of this investigation add to the body of evidence that the PAA metabolic complex is involved in Rhizoctonia disease development but do not indicate that production of these compounds is the primary or the only determinant of pathogenicity.


Assuntos
Fenilacetatos/metabolismo , Rhizoctonia/metabolismo , Solanum lycopersicum/microbiologia , Meios de Cultura , Cromatografia Gasosa-Espectrometria de Massas , Interações Hospedeiro-Parasita , Solanum lycopersicum/crescimento & desenvolvimento , Micélio/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Caules de Planta/microbiologia , Rhizoctonia/crescimento & desenvolvimento , Rhizoctonia/patogenicidade , Plântula/crescimento & desenvolvimento
2.
FEMS Microbiol Lett ; 285(1): 122-9, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18549402

RESUMO

Mannitol has been hypothesized to play a role in antioxidant defense. In previous work, we confirmed the presence of the two mannitol biosynthetic enzymes, mannitol dehydrogenase (MtDH) and mannitol 1-phosphate 5-dehydrogenase (MPDH), in the fungus Alternaria alternata and created disruption mutants for both enzymes. These mutants were used to investigate the role of mannitol in pathogenicity of A. alternata on its host, tobacco. Conidia of all mutants were viable and germinated normally. GC-MS analysis demonstrated elevated levels of trehalose in the mutants, suggesting that trehalose may substitute for mannitol as a storage compound for germination. Tobacco inoculation showed no reduction in lesion severity caused by the MtDH mutant as compared with wild type; however, the MPDH mutant and a mutant in both enzymes caused significantly less disease. Microscopy analysis indicated that the double mutant was unaffected in the ability to germinate and produce appressoria on tobacco leaves and elicited a defense response from the host, indicating that it was able to penetrate and infect the host. We conclude that mannitol biosynthesis is required for pathogenesis of A. alternata on tobacco, but is not required for spore germination either in vitro or in planta or for initial infection.


Assuntos
Alternaria/metabolismo , Alternaria/patogenicidade , Manitol/metabolismo , Nicotiana/microbiologia , Doenças das Plantas/microbiologia , Alternaria/genética , Alternaria/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo , Esporos Fúngicos/patogenicidade , Desidrogenase do Álcool de Açúcar/genética , Desidrogenase do Álcool de Açúcar/metabolismo , Trealose/metabolismo
3.
Phytochemistry ; 89: 47-52, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23380633

RESUMO

The metabolic control of plant growth regulator production by the plant pathogenic fungus Rhizoctonia solani Kühn (teleomorph=Thanatephorus cucumeris (A.B. Frank) Donk) and consequences associated with the parasitic and saprobic activity of the fungus were investigated. Fourteen genetically distinct isolates of the fungus belonging to anastomosis groups (AG) AG-3, AG-4, and AG-1-IA were grown on Vogel's minimal medium N with and without the addition of a 25 mM quinic acid (QA) source of carbon. The effect of QA on fungal biomass was determined by measuring the dry wt of mycelia produced under each growth condition. QA stimulated growth of 13 of 14 isolates of R. solani examined. The production of phenylacetic acid (PAA) and the chemically related derivatives 2-hydroxy-PAA, 3-hydroxy-PAA, 4-hydroxy-PAA, and 3-methoxy-PAA on the two different media was compared by gas chromatography coupled with mass spectrometry (GC-MS). The presence of QA in the growth medium of R. solani altered the PAA production profile, limiting the conversion of PAA to derivative forms. The effect of QA on the ability of R. solani to cause disease was examined by inoculating tomato (Solanum lycopersicum L.) plants with 11 isolates of R. solani AG-3 grown on media with and without the addition of 25 mM QA. Mean percent survival of tomato plants inoculated with R. solani was significantly higher when the fungal inoculum was generated on growth medium containing QA. The results of this study support the hypotheses that utilization of QA by R. solani leads to reduced production of the plant growth regulators belonging to the PAA metabolic complex which can suppress plant disease development.


Assuntos
Fenilacetatos/metabolismo , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/biossíntese , Ácido Quínico/farmacologia , Rhizoctonia/efeitos dos fármacos , Rhizoctonia/metabolismo , Solanum lycopersicum/microbiologia , Fenilacetatos/química , Reguladores de Crescimento de Plantas/química , Rhizoctonia/crescimento & desenvolvimento , Rhizoctonia/fisiologia
4.
Fungal Genet Biol ; 44(4): 258-68, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17092745

RESUMO

Mannitol metabolism in fungi is thought to occur through a mannitol cycle first described in 1978. In this cycle, mannitol 1-phosphate 5-dehydrogenase (EC 1.1.1.17) was proposed to reduce fructose 6-phosphate into mannitol 1-phosphate, followed by dephosphorylation by a mannitol 1-phosphatase (EC 3.1.3.22) resulting in inorganic phosphate and mannitol. Mannitol would be converted back to fructose by the enzyme mannitol dehydrogenase (EC 1.1.1.138). Although mannitol 1-phosphate 5-dehydrogenase was proposed as the major biosynthetic enzyme and mannitol dehydrogenase as a degradative enzyme, both enzymes catalyze their respective reverse reactions. To date the cycle has not been confirmed through genetic analysis. We conducted enzyme assays that confirmed the presence of these enzymes in a tobacco isolate of Alternaria alternata. Using a degenerate primer strategy, we isolated the genes encoding the enzymes and used targeted gene disruption to create mutants deficient in mannitol 1-phosphate 5-dehydrogenase, mannitol dehydrogenase, or both. PCR analysis confirmed gene disruption in the mutants, and enzyme assays demonstrated a lack of enzymatic activity for each enzyme. GC-MS experiments showed that a mutant deficient in both enzymes did not produce mannitol. Mutants deficient in mannitol 1-phosphate 5-dehydrogenase or mannitol dehydrogenase alone produced 11.5 and 65.7 %, respectively, of wild type levels. All mutants grew on mannitol as a sole carbon source, however, the double mutant and mutant deficient in mannitol 1-phosphate 5-dehydrogenase grew poorly. Our data demonstrate that mannitol 1-phosphate 5-dehydrogenase and mannitol dehydrogenase are essential enzymes in mannitol metabolism in A. alternata, but do not support mannitol metabolism operating as a cycle.


Assuntos
Alternaria/enzimologia , Proteínas Fúngicas/metabolismo , Manitol Desidrogenases/metabolismo , Manitol/metabolismo , Desidrogenase do Álcool de Açúcar/metabolismo , Alternaria/crescimento & desenvolvimento , Meios de Cultura , Proteínas Fúngicas/genética , Deleção de Genes , Genes Fúngicos , Manitol Desidrogenases/genética , Doenças das Plantas/microbiologia , Especificidade por Substrato , Desidrogenase do Álcool de Açúcar/genética , Nicotiana/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA