Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Biol Sci ; 285(1881)2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29925611

RESUMO

Migration has evolved among many animal taxa and migratory species are found across all major lineages. Insects are the most abundant and diverse terrestrial migrants, with trillions of animals migrating annually. Partial migration, where populations consist of resident and migratory individuals, is ubiquitous among many taxa. However, the underlying mechanisms are relatively poorly understood and may be driven by physiological, behavioural or genetic variation within populations. We investigated the differences in migratory tendency between migratory and resident phenotypes of the hoverfly, Episyrphus balteatus, using tethered flight mills. Further, to test whether migratory flight behaviour is heritable and to disentangle the effects of environment during development, we compared the flight behaviour of laboratory-reared offspring of migrating, overwintering and summer animals. Offspring of migrants initiated more flights than those of resident individuals. Interestingly, there were no differences among wild-caught phenotypes with regard to number of flights or total flight duration. Low activity in field-collected migrants might be explained by an energy-conserving state that migrants enter into when under laboratory conditions, or a lack of suitable environmental cues for triggering migration. Our results strongly suggest that flight behaviour is heritable and that genetic factors influence migratory tendency in E. balteatus These findings support the growing evidence that genetic factors play a role in partial migration and warrant careful further investigation.


Assuntos
Migração Animal , Dípteros/fisiologia , Voo Animal , Fenótipo , Animais , Dípteros/genética , Feminino , Masculino , Estações do Ano
2.
Tree Physiol ; 42(2): 273-288, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34528673

RESUMO

Abies alba (Mill.) has a high potential for mitigating climate change in European mountain forests; yet, its natural regeneration is severely limited by ungulate browsing. Here, we simulated browsing in a common garden experiment to study growth and physiological traits, measured from bulk needles, using a randomized block design with two levels of browsing severity and seedlings originating from 19 populations across Switzerland. Genetic factors explained most variation in growth (on average, 51.5%) and physiological traits (10.2%) under control conditions, while heavy browsing considerably reduced the genetic effects on growth (to 30%), but doubled those on physiological traits related to carbon storage. While browsing reduced seedling height, it also lowered seedling water-use efficiency (decreased $\delta ^{13}$C) and increased their $\delta ^{15}$N. Different populations reacted differently to browsing stress, and for seedling height, starch concentration and $\delta ^{15}$N, population differences appeared to be the result of natural selection. First, we found that populations originating from the warmest regions recovered the fastest from browsing stress, and they did so by mobilizing starch from their needles, which suggests a genetic underpinning for a growth-storage trade-off across populations. Second, we found that seedlings originating from mountain populations growing on steep slopes had a higher $\delta ^{15}$N in the common garden than those originating from flat areas, indicating that they have been selected to grow on N-poor, potentially drained, soils. This finding was corroborated by the fact that nitrogen concentration in adult needles was lower on steep slopes than on flat ground, strongly indicating that steep slopes are the most N-poor environments. These results suggest that adaptation to climate and soil nitrogen availability, as well as ungulate browsing pressure, co-determine the regeneration and range limit of silver fir.


Assuntos
Abies , Florestas , Nitrogênio , Plântula/fisiologia , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA