Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
Oral Oncol ; 127: 105787, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35248922

RESUMO

OBJECTIVES: Recurrent and/or metastatic (R/M) head and neck squamous cell carcinoma (HNSCC) is currently an incurable disease. To improve treatment strategies, combinations of cetuximab plus nivolumab or pembrolizumab were evaluated for efficacy and safety for incurable R/M HNSCC. While some patients had a significant clinical benefit with complete or partial response, most patients had stable or progressive disease (PD). To identify patients with a high likelihood of treatment failure and prevent futile treatments, we developed a mathematical model of early response dynamics as an early biomarker of treatment failure. MATERIALS AND METHODS: Demographics, RECIST assessment, and outcome were obtained from patients who were treated with combination of cetuximab and nivolumab on a previously published phase I/II clinical trial. We trained a tumor growth inhibition (TGI) ordinary differential equation (ODE) model describing patient-specific pre-treatment growth rate and uniform initial treatment sensitivity and rate of evolution of resistance. In a leave-one-out approach, we forecasted tumor burden and predicted time to progression (TTP) and PD. RESULTS: The TGI model accurately represented tumor burden dynamics (R2=0.98; RMSE=0.57 cm) and predicted PD with accuracy=0.71,sensitivity=1.00, and specificity=0.69 after three serial response assessment scans. Patient-specific pre-treatment growth rate correlated negatively with TTP (Spearman's ρ=-0.67,p=5.7e-05). CONCLUSION: The TGI model can identify patients with high likelihood of PD based on early dynamics. Further studies including prospective validation are warranted.


Assuntos
Neoplasias de Cabeça e Pescoço , Nivolumabe , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Cetuximab/uso terapêutico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Humanos , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Nivolumabe/uso terapêutico , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Falha de Tratamento
3.
J Clin Med ; 9(7)2020 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-32605050

RESUMO

Recurrent high-grade glioma (HGG) remains incurable with inevitable evolution of resistance and high inter-patient heterogeneity in time to progression (TTP). Here, we evaluate if early tumor volume response dynamics can calibrate a mathematical model to predict patient-specific resistance to develop opportunities for treatment adaptation for patients with a high risk of progression. A total of 95 T1-weighted contrast-enhanced (T1post) MRIs from 14 patients treated in a phase I clinical trial with hypo-fractionated stereotactic radiation (HFSRT; 6 Gy × 5) plus pembrolizumab (100 or 200 mg, every 3 weeks) and bevacizumab (10 mg/kg, every 2 weeks; NCT02313272) were delineated to derive longitudinal tumor volumes. We developed, calibrated, and validated a mathematical model that simulates and forecasts tumor volume dynamics with rate of resistance evolution as the single patient-specific parameter. Model prediction performance is evaluated based on how early progression is predicted and the number of false-negative predictions. The model with one patient-specific parameter describing the rate of evolution of resistance to therapy fits untrained data ( R 2 = 0.70 ). In a leave-one-out study, for the nine patients that had T1post tumor volumes ≥1 cm3, the model was able to predict progression on average two imaging cycles early, with a median of 9.3 (range: 3-39.3) weeks early (median progression-free survival was 27.4 weeks). Our results demonstrate that early tumor volume dynamics measured on T1post MRI has the potential to predict progression following the protocol therapy in select patients with recurrent HGG. Future work will include testing on an independent patient dataset and evaluation of the developed framework on T2/FLAIR-derived data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA