RESUMO
As researchers develop computational models of neural systems with increasing sophistication and scale, it is often the case that fully de novo model development is impractical and inefficient. Thus arises a critical need to quickly find, evaluate, re-use, and build upon models and model components developed by other researchers. We introduce the NeuroML Database (NeuroML-DB.org), which has been developed to address this need and to complement other model sharing resources. NeuroML-DB stores over 1,500 previously published models of ion channels, cells, and networks that have been translated to the modular NeuroML model description language. The database also provides reciprocal links to other neuroscience model databases (ModelDB, Open Source Brain) as well as access to the original model publications (PubMed). These links along with Neuroscience Information Framework (NIF) search functionality provide deep integration with other neuroscience community modeling resources and greatly facilitate the task of finding suitable models for reuse. Serving as an intermediate language, NeuroML and its tooling ecosystem enable efficient translation of models to other popular simulator formats. The modular nature also enables efficient analysis of a large number of models and inspection of their properties. Search capabilities of the database, together with web-based, programmable online interfaces, allow the community of researchers to rapidly assess stored model electrophysiology, morphology, and computational complexity properties. We use these capabilities to perform a database-scale analysis of neuron and ion channel models and describe a novel tetrahedral structure formed by cell model clusters in the space of model properties and features. This analysis provides further information about model similarity to enrich database search.
Assuntos
Neurociências , Software , Ecossistema , PubMed , Neurônios/fisiologiaRESUMO
Computational models have great potential to accelerate bioscience, bioengineering, and medicine. However, it remains challenging to reproduce and reuse simulations, in part, because the numerous formats and methods for simulating various subsystems and scales remain siloed by different software tools. For example, each tool must be executed through a distinct interface. To help investigators find and use simulation tools, we developed BioSimulators (https://biosimulators.org), a central registry of the capabilities of simulation tools and consistent Python, command-line and containerized interfaces to each version of each tool. The foundation of BioSimulators is standards, such as CellML, SBML, SED-ML and the COMBINE archive format, and validation tools for simulation projects and simulation tools that ensure these standards are used consistently. To help modelers find tools for particular projects, we have also used the registry to develop recommendation services. We anticipate that BioSimulators will help modelers exchange, reproduce, and combine simulations.
Assuntos
Simulação por Computador , Software , Humanos , Bioengenharia , Modelos Biológicos , Sistema de Registros , PesquisadoresRESUMO
Life science researchers use computational models to articulate and test hypotheses about the behavior of biological systems. Semantic annotation is a critical component for enhancing the interoperability and reusability of such models as well as for the integration of the data needed for model parameterization and validation. Encoded as machine-readable links to knowledge resource terms, semantic annotations describe the computational or biological meaning of what models and data represent. These annotations help researchers find and repurpose models, accelerate model composition and enable knowledge integration across model repositories and experimental data stores. However, realizing the potential benefits of semantic annotation requires the development of model annotation standards that adhere to a community-based annotation protocol. Without such standards, tool developers must account for a variety of annotation formats and approaches, a situation that can become prohibitively cumbersome and which can defeat the purpose of linking model elements to controlled knowledge resource terms. Currently, no consensus protocol for semantic annotation exists among the larger biological modeling community. Here, we report on the landscape of current annotation practices among the COmputational Modeling in BIology NEtwork community and provide a set of recommendations for building a consensus approach to semantic annotation.
Assuntos
Disciplinas das Ciências Biológicas , Biologia Computacional/métodos , Simulação por Computador , Bases de Dados Factuais , Semântica , Humanos , SoftwareRESUMO
Increasing availability of comprehensive experimental datasets and of high-performance computing resources are driving rapid growth in scale, complexity, and biological realism of computational models in neuroscience. To support construction and simulation, as well as sharing of such large-scale models, a broadly applicable, flexible, and high-performance data format is necessary. To address this need, we have developed the Scalable Open Network Architecture TemplAte (SONATA) data format. It is designed for memory and computational efficiency and works across multiple platforms. The format represents neuronal circuits and simulation inputs and outputs via standardized files and provides much flexibility for adding new conventions or extensions. SONATA is used in multiple modeling and visualization tools, and we also provide reference Application Programming Interfaces and model examples to catalyze further adoption. SONATA format is free and open for the community to use and build upon with the goal of enabling efficient model building, sharing, and reproducibility.
Assuntos
Encéfalo/fisiologia , Biologia Computacional/métodos , Neurociências , Algoritmos , Mapeamento Encefálico , Simulação por Computador , Bases de Dados Factuais , Humanos , Modelos Neurológicos , Neurônios/fisiologia , Linguagens de Programação , Reprodutibilidade dos Testes , SoftwareRESUMO
In vivo, cortical pyramidal cells are bombarded by asynchronous synaptic input arising from ongoing network activity. However, little is known about how such 'background' synaptic input interacts with nonlinear dendritic mechanisms. We have modified an existing model of a layer 5 (L5) pyramidal cell to explore how dendritic integration in the apical dendritic tuft could be altered by the levels of network activity observed in vivo. Here we show that asynchronous background excitatory input increases neuronal gain and extends both temporal and spatial integration of stimulus-evoked synaptic input onto the dendritic tuft. Addition of fast and slow inhibitory synaptic conductances, with properties similar to those from dendritic targeting interneurons, that provided a 'balanced' background configuration, partially counteracted these effects, suggesting that inhibition can tune spatio-temporal integration in the tuft. Excitatory background input lowered the threshold for NMDA receptor-mediated dendritic spikes, extended their duration and increased the probability of additional regenerative events occurring in neighbouring branches. These effects were also observed in a passive model where all the non-synaptic voltage-gated conductances were removed. Our results show that glutamate-bound NMDA receptors arising from ongoing network activity can provide a powerful spatially distributed nonlinear dendritic conductance. This may enable L5 pyramidal cells to change their integrative properties as a function of local network activity, potentially allowing both clustered and spatially distributed synaptic inputs to be integrated over extended timescales.
Assuntos
Córtex Cerebral/metabolismo , Ácido Glutâmico/metabolismo , Modelos Biológicos , Células Piramidais/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Córtex Cerebral/citologia , Dendritos/metabolismo , Sinapses/metabolismoRESUMO
The Brain Imaging Data Structure (BIDS) is a community-driven standard for the organization of data and metadata from a growing range of neuroscience modalities. This paper is meant as a history of how the standard has developed and grown over time. We outline the principles behind the project, the mechanisms by which it has been extended, and some of the challenges being addressed as it evolves. We also discuss the lessons learned through the project, with the aim of enabling researchers in other domains to learn from the success of BIDS.
RESUMO
The Brain Imaging Data Structure (BIDS) is a community-driven standard for the organization of data and metadata from a growing range of neuroscience modalities. This paper is meant as a history of how the standard has developed and grown over time. We outline the principles behind the project, the mechanisms by which it has been extended, and some of the challenges being addressed as it evolves. We also discuss the lessons learned through the project, with the aim of enabling researchers in other domains to learn from the success of BIDS.
RESUMO
Neuroscience, cognitive science, and computer science are increasingly benefiting through their interactions. This could be accelerated by direct sharing of computational models across disparate modeling software used in each. We describe a Model Description Format designed to meet this challenge.
Assuntos
Neurociência Cognitiva , Neurociências , Software , Aprendizado de MáquinaRESUMO
This special issue of the Journal of Integrative Bioinformatics contains updated specifications of COMBINE standards in systems and synthetic biology. The 2022 special issue presents three updates to the standards: CellML 2.0.1, SBML Level 3 Package: Spatial Processes, Version 1, Release 1, and Synthetic Biology Open Language (SBOL) Version 3.1.0. This document can also be used to identify the latest specifications for all COMBINE standards. In addition, this editorial provides a brief overview of the COMBINE 2022 meeting in Berlin.
Assuntos
Biologia Computacional , Biologia Sintética , Linguagens de Programação , SoftwareRESUMO
Conductance-based neuronal network models can help us understand how synaptic and cellular mechanisms underlie brain function. However, these complex models are difficult to develop and are inaccessible to most neuroscientists. Moreover, even the most biologically realistic network models disregard many 3D anatomical features of the brain. Here, we describe a new software application, neuroConstruct, that facilitates the creation, visualization, and analysis of networks of multicompartmental neurons in 3D space. A graphical user interface allows model generation and modification without programming. Models within neuroConstruct are based on new simulator-independent NeuroML standards, allowing automatic generation of code for NEURON or GENESIS simulators. neuroConstruct was tested by reproducing published models and its simulator independence verified by comparing the same model on two simulators. We show how more anatomically realistic network models can be created and their properties compared with experimental measurements by extending a published 1D cerebellar granule cell layer model to 3D.
Assuntos
Redes Neurais de Computação , Neurônios/fisiologia , Algoritmos , Córtex Cerebelar/citologia , Córtex Cerebelar/fisiologia , Simulação por Computador , Giro Denteado/fisiologia , Humanos , Modelos Neurológicos , Condução Nervosa/fisiologia , Neurônios/ultraestruturaRESUMO
Biologically detailed single neuron and network models are important for understanding how ion channels, synapses and anatomical connectivity underlie the complex electrical behavior of the brain. While neuronal simulators such as NEURON, GENESIS, MOOSE, NEST, and PSICS facilitate the development of these data-driven neuronal models, the specialized languages they employ are generally not interoperable, limiting model accessibility and preventing reuse of model components and cross-simulator validation. To overcome these problems we have used an Open Source software approach to develop NeuroML, a neuronal model description language based on XML (Extensible Markup Language). This enables these detailed models and their components to be defined in a standalone form, allowing them to be used across multiple simulators and archived in a standardized format. Here we describe the structure of NeuroML and demonstrate its scope by converting into NeuroML models of a number of different voltage- and ligand-gated conductances, models of electrical coupling, synaptic transmission and short-term plasticity, together with morphologically detailed models of individual neurons. We have also used these NeuroML-based components to develop an highly detailed cortical network model. NeuroML-based model descriptions were validated by demonstrating similar model behavior across five independently developed simulators. Although our results confirm that simulations run on different simulators converge, they reveal limits to model interoperability, by showing that for some models convergence only occurs at high levels of spatial and temporal discretisation, when the computational overhead is high. Our development of NeuroML as a common description language for biophysically detailed neuronal and network models enables interoperability across multiple simulation environments, thereby improving model transparency, accessibility and reuse in computational neuroscience.
Assuntos
Biologia Computacional/métodos , Modelos Neurológicos , Rede Nervosa , Neurônios/fisiologia , Software , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Simulação por Computador , Sinapses Elétricas , Humanos , Reprodutibilidade dos Testes , Tálamo/citologia , Tálamo/fisiologiaRESUMO
This special issue of the Journal of Integrative Bioinformatics contains updated specifications of COMBINE standards in systems and synthetic biology. The 2021 special issue presents four updates of standards: Synthetic Biology Open Language Visual Version 2.3, Synthetic Biology Open Language Visual Version 3.0, Simulation Experiment Description Markup Language Level 1 Version 4, and OMEX Metadata specification Version 1.2. This document can also be consulted to identify the latest specifications of all COMBINE standards.
Assuntos
Biologia Computacional , Biologia Sintética , Simulação por Computador , Metadados , Linguagens de Programação , SoftwareRESUMO
This paper presents a report on outcomes of the 10th Computational Modeling in Biology Network (COMBINE) meeting that was held in Heidelberg, Germany, in July of 2019. The annual event brings together researchers, biocurators and software engineers to present recent results and discuss future work in the area of standards for systems and synthetic biology. The COMBINE initiative coordinates the development of various community standards and formats for computational models in the life sciences. Over the past 10 years, COMBINE has brought together standard communities that have further developed and harmonized their standards for better interoperability of models and data. COMBINE 2019 was co-located with a stakeholder workshop of the European EU-STANDS4PM initiative that aims at harmonized data and model standardization for in silico models in the field of personalized medicine, as well as with the FAIRDOM PALs meeting to discuss findable, accessible, interoperable and reusable (FAIR) data sharing. This report briefly describes the work discussed in invited and contributed talks as well as during breakout sessions. It also highlights recent advancements in data, model, and annotation standardization efforts. Finally, this report concludes with some challenges and opportunities that this community will face during the next 10 years.
Assuntos
Biologia Computacional , Biologia Sintética , Alemanha , Padrões de Referência , SoftwareRESUMO
This special issue of the Journal of Integrative Bioinformatics presents an overview of COMBINE standards and their latest specifications. The standards cover representation formats for computational modeling in synthetic and systems biology and include BioPAX, CellML, NeuroML, SBML, SBGN, SBOL and SED-ML. The articles in this issue contain updated specifications of SBGN Process Description Level 1 Version 2, SBML Level 3 Core Version 2 Release 2, SBOL Version 2.3.0, and SBOL Visual Version 2.1.
Assuntos
Simulação por Computador , Modelos Biológicos , Linguagens de Programação , Biologia Sintética , Biologia de SistemasRESUMO
The Target Article by Lee et al. (2019) highlights the ways in which ongoing concerns about research reproducibility extend to model-based approaches in cognitive science. Whereas Lee et al. focus primarily on the importance of research practices to improve model robustness, we propose that the transparent sharing of model specifications, including their inputs and outputs, is also essential to improving the reproducibility of model-based analyses. We outline an ongoing effort (within the context of the Brain Imaging Data Structure community) to develop standards for the sharing of the structure of computational models and their outputs.
RESUMO
Biophysical modeling of neuronal networks helps to integrate and interpret rapidly growing and disparate experimental datasets at multiple scales. The NetPyNE tool (www.netpyne.org) provides both programmatic and graphical interfaces to develop data-driven multiscale network models in NEURON. NetPyNE clearly separates model parameters from implementation code. Users provide specifications at a high level via a standardized declarative language, for example connectivity rules, to create millions of cell-to-cell connections. NetPyNE then enables users to generate the NEURON network, run efficiently parallelized simulations, optimize and explore network parameters through automated batch runs, and use built-in functions for visualization and analysis - connectivity matrices, voltage traces, spike raster plots, local field potentials, and information theoretic measures. NetPyNE also facilitates model sharing by exporting and importing standardized formats (NeuroML and SONATA). NetPyNE is already being used to teach computational neuroscience students and by modelers to investigate brain regions and phenomena.
Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Biologia Computacional/métodos , Rede Nervosa/anatomia & histologia , Rede Nervosa/fisiologia , Simulação por Computador , Modelos NeurológicosRESUMO
Computational models are powerful tools for exploring the properties of complex biological systems. In neuroscience, data-driven models of neural circuits that span multiple scales are increasingly being used to understand brain function in health and disease. But their adoption and reuse has been limited by the specialist knowledge required to evaluate and use them. To address this, we have developed Open Source Brain, a platform for sharing, viewing, analyzing, and simulating standardized models from different brain regions and species. Model structure and parameters can be automatically visualized and their dynamical properties explored through browser-based simulations. Infrastructure and tools for collaborative interaction, development, and testing are also provided. We demonstrate how existing components can be reused by constructing new models of inhibition-stabilized cortical networks that match recent experimental results. These features of Open Source Brain improve the accessibility, transparency, and reproducibility of models and facilitate their reuse by the wider community.
Assuntos
Encéfalo/fisiologia , Biologia Computacional/normas , Simulação por Computador , Modelos Neurológicos , Neurônios/fisiologia , Encéfalo/citologia , Biologia Computacional/métodos , Humanos , Internet , Redes Neurais de Computação , Sistemas On-LineRESUMO
It has been 30 years since the 'mind of the worm' was published in Philosophical Transactions B (White et al 1986 Phil. Trans. R. Soc. Lond. B314, 1-340). Predicting Caenorhabditis elegans' behaviour from its wiring diagram has been an enduring challenge since then. This special theme issue of Philosophical Transactions B combines research from neuroscientists, physicists, mathematicians and engineers to discuss advances in neural activity imaging, behaviour quantification and multiscale simulations, and how they are bringing the goal of whole-animal modelling at cellular resolution within reach.This article is part of a discussion meeting issue 'Connectome to behaviour: modelling C. elegans at cellular resolution'.
Assuntos
Caenorhabditis elegans/fisiologia , Conectoma/métodos , Fenômenos Fisiológicos do Sistema Nervoso , Animais , Modelos NeurológicosRESUMO
The OpenWorm project has the ambitious goal of producing a highly detailed in silico model of the nematode Caenorhabditis elegans A crucial part of this work will be a model of the nervous system encompassing all known cell types and connections. The appropriate level of biophysical detail required in the neuronal model to reproduce observed high-level behaviours in the worm has yet to be determined. For this reason, we have developed a framework, c302, that allows different instances of neuronal networks to be generated incorporating varying levels of anatomical and physiological detail, which can be investigated and refined independently or linked to other tools developed in the OpenWorm modelling toolchain.This article is part of a discussion meeting issue 'Connectome to behaviour: modelling C. elegans at cellular resolution'.