Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Blood ; 136(18): 2051-2064, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-32726410

RESUMO

Primary myelofibrosis (PMF) is a myeloproliferative neoplasm (MPN) that leads to progressive bone marrow (BM) fibrosis. Although the cellular mutations involved in the pathogenesis of PMF have been extensively investigated, the sequential events that drive stromal activation and fibrosis by hematopoietic-stromal cross-talk remain elusive. Using an unbiased approach and validation in patients with MPN, we determined that the differential spatial expression of the chemokine CXCL4/platelet factor-4 marks the progression of fibrosis. We show that the absence of hematopoietic CXCL4 ameliorates the MPN phenotype, reduces stromal cell activation and BM fibrosis, and decreases the activation of profibrotic pathways in megakaryocytes, inflammation in fibrosis-driving cells, and JAK/STAT activation in both megakaryocytes and stromal cells in 3 murine PMF models. Our data indicate that higher CXCL4 expression in MPN has profibrotic effects and is a mediator of the characteristic inflammation. Therefore, targeting CXCL4 might be a promising strategy to reduce inflammation in PMF.


Assuntos
Medula Óssea/patologia , Fibrose/patologia , Inflamação/patologia , Transtornos Mieloproliferativos/complicações , Fator Plaquetário 4/metabolismo , Mielofibrose Primária/patologia , Animais , Medula Óssea/imunologia , Medula Óssea/metabolismo , Proliferação de Células , Progressão da Doença , Fibrose/etiologia , Fibrose/imunologia , Fibrose/metabolismo , Humanos , Inflamação/etiologia , Inflamação/imunologia , Inflamação/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Masculino , Megacariócitos , Camundongos , Camundongos Knockout , Mutação , Fator Plaquetário 4/genética , Mielofibrose Primária/etiologia , Mielofibrose Primária/imunologia , Mielofibrose Primária/metabolismo
2.
Curr Opin Hematol ; 28(5): 364-371, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34232140

RESUMO

PURPOSE OF REVIEW: Bone marrow fibrosis is the progressive replacement of blood-forming cells by reticulin fibres, caused by the acquisition of somatic mutations in hematopoietic stem cells. The molecular and cellular mechanisms that drive the progression of bone marrow fibrosis remain unknown, yet chronic inflammation appears to be a conserved feature in most patients suffering from myeloproliferative neoplasms. RECENT FINDINGS: Here, we review recent literature pertaining to the role of inflammation in driving bone marrow fibrosis, and its effect on the various hematopoietic and nonhematopoietic cell populations. SUMMARY: Recent evidence suggests that the pathogenesis of MPN is primarily driven by the hematopoietic stem and progenitor cells, together with their mutated progeny, which in turn results in chronic inflammation that disrupts the bone marrow niche and perpetuates a disease-permissive environment. Emerging data suggests that specifically targeting stromal inflammation in combination with JAK inhibition may be the way forward to better treat MPNs, and bone marrow fibrosis specifically.


Assuntos
Medula Óssea , Neoplasias Hematológicas , Células-Tronco Hematopoéticas , Mielofibrose Primária , Medula Óssea/metabolismo , Medula Óssea/patologia , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/metabolismo , Transtornos Mieloproliferativos/patologia , Mielofibrose Primária/tratamento farmacológico , Mielofibrose Primária/metabolismo , Mielofibrose Primária/patologia
3.
J Pathol ; 245(2): 138-146, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29570794

RESUMO

Bone marrow fibrosis is the continuous replacement of blood-forming cells in the bone marrow with excessive scar tissue, leading to failure of the body to produce blood cells and ultimately to death. Myofibroblasts are fibrosis-driving cells and are well characterized in solid organ fibrosis, but their role and cellular origin in bone marrow fibrosis have remained obscure. Recent work has demonstrated that Gli1+ and leptin receptor+ mesenchymal stromal cells are progenitors of fibrosis-causing myofibroblasts in the bone marrow. Genetic ablation or pharmacological inhibition of Gli1+ mesenchymal stromal cells ameliorated fibrosis in mouse models of myelofibrosis. Conditional deletion of the platelet-derived growth factor (PDGF) receptor-α (PDGFRA) gene (Pdgfra) and inhibition of PDGFRA by imatinib in leptin receptor+ stromal cells suppressed their expansion and ameliorated bone marrow fibrosis. Understanding the cellular and molecular mechanisms in the haematopoietic stem cell niche that govern the mesenchymal stromal cell-to-myofibroblast transition and myofibroblast expansion will be critical to understand the pathogenesis of bone marrow fibrosis in both malignant and non-malignant conditions, and will guide the development of novel therapeutics. In this review, we summarize recent discoveries of mesenchymal stromal cells as part of the haematopoietic niche and as myofibroblast precursors, and discuss potential therapeutic strategies in the specific targeting of fibrotic transformation in bone marrow fibrosis. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Terapia de Alvo Molecular/métodos , Mielofibrose Primária/tratamento farmacológico , Nicho de Células-Tronco , Animais , Linhagem da Célula , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Fenótipo , Mielofibrose Primária/genética , Mielofibrose Primária/metabolismo , Mielofibrose Primária/patologia , Transdução de Sinais/efeitos dos fármacos
4.
Brain ; 141(1): 99-116, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29186350

RESUMO

Mucopolysaccharidosis IIIB is a paediatric lysosomal storage disease caused by deficiency of the enzyme α-N-acetylglucosaminidase (NAGLU), involved in the degradation of the glycosaminoglycan heparan sulphate. Absence of NAGLU leads to accumulation of partially degraded heparan sulphate within lysosomes and the extracellular matrix, giving rise to severe CNS degeneration with progressive cognitive impairment and behavioural problems. There are no therapies. Haematopoietic stem cell transplant shows great efficacy in the related disease mucopolysaccharidosis I, where donor-derived monocytes can transmigrate into the brain following bone marrow engraftment, secrete the missing enzyme and cross-correct neighbouring cells. However, little neurological correction is achieved in patients with mucopolysaccharidosis IIIB. We have therefore developed an ex vivo haematopoietic stem cell gene therapy approach in a mouse model of mucopolysaccharidosis IIIB, using a high-titre lentiviral vector and the myeloid-specific CD11b promoter, driving the expression of NAGLU (LV.NAGLU). To understand the mechanism of correction we also compared this with a poorly secreted version of NAGLU containing a C-terminal fusion to IGFII (LV.NAGLU-IGFII). Mucopolysaccharidosis IIIB haematopoietic stem cells were transduced with vector, transplanted into myeloablated mucopolysaccharidosis IIIB mice and compared at 8 months of age with mice receiving a wild-type transplant. As the disease is characterized by increased inflammation, we also tested the anti-inflammatory steroidal agent prednisolone alone, or in combination with LV.NAGLU, to understand the importance of inflammation on behaviour. NAGLU enzyme was substantially increased in the brain of LV.NAGLU and LV.NAGLU-IGFII-treated mice, with little expression in wild-type bone marrow transplanted mice. LV.NAGLU treatment led to behavioural correction, normalization of heparan sulphate and sulphation patterning, reduced inflammatory cytokine expression and correction of astrocytosis, microgliosis and lysosomal compartment size throughout the brain. The addition of prednisolone improved inflammatory aspects further. Substantial correction of lysosomal storage in neurons and astrocytes was also achieved in LV.NAGLU-IGFII-treated mice, despite limited enzyme secretion from engrafted macrophages in the brain. Interestingly both wild-type bone marrow transplant and prednisolone treatment alone corrected behaviour, despite having little effect on brain neuropathology. This was attributed to a decrease in peripheral inflammatory cytokines. Here we show significant neurological disease correction is achieved using haematopoietic stem cell gene therapy, suggesting this therapy alone or in combination with anti-inflammatories may improve neurological function in patients.


Assuntos
Encefalite/etiologia , Encefalite/terapia , Terapia Genética/métodos , Macrófagos/enzimologia , Mucopolissacaridose III , Células-Tronco/fisiologia , Animais , Encéfalo/enzimologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Gliose/terapia , Glicosaminoglicanos/genética , Glicosaminoglicanos/metabolismo , Humanos , Fígado/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mucopolissacaridose III/complicações , Mucopolissacaridose III/genética , Mucopolissacaridose III/patologia , Mucopolissacaridose III/terapia , Prednisolona/uso terapêutico , Baço/enzimologia , Sulfatases/genética , Sulfatases/metabolismo
5.
Brain ; 141(7): 2014-2031, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29788236

RESUMO

Recombinant adeno-associated viruses (AAVs) are popular in vivo gene transfer vehicles. However, vector doses needed to achieve therapeutic effect are high and some target tissues in the central nervous system remain difficult to transduce. Gene therapy trials using AAV for the treatment of neurological disorders have seldom led to demonstrated clinical efficacy. Important contributing factors are low transduction rates and inefficient distribution of the vector. To overcome these hurdles, a variety of capsid engineering methods have been utilized to generate capsids with improved transduction properties. Here we describe an alternative approach to capsid engineering, which draws on the natural evolution of the virus and aims to yield capsids that are better suited to infect human tissues. We generated an AAV capsid to include amino acids that are conserved among natural AAV2 isolates and tested its biodistribution properties in mice and rats. Intriguingly, this novel variant, AAV-TT, demonstrates strong neurotropism in rodents and displays significantly improved distribution throughout the central nervous system as compared to AAV2. Additionally, sub-retinal injections in mice revealed markedly enhanced transduction of photoreceptor cells when compared to AAV2. Importantly, AAV-TT exceeds the distribution abilities of benchmark neurotropic serotypes AAV9 and AAVrh10 in the central nervous system of mice, and is the only virus, when administered at low dose, that is able to correct the neurological phenotype in a mouse model of mucopolysaccharidosis IIIC, a transmembrane enzyme lysosomal storage disease, which requires delivery to every cell for biochemical correction. These data represent unprecedented correction of a lysosomal transmembrane enzyme deficiency in mice and suggest that AAV-TT-based gene therapies may be suitable for treatment of human neurological diseases such as mucopolysaccharidosis IIIC, which is characterized by global neuropathology.


Assuntos
Capsídeo/fisiologia , Terapia Genética/métodos , Engenharia de Proteínas/métodos , Animais , Dependovirus/genética , Feminino , Vetores Genéticos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mucopolissacaridose III/genética , Mucopolissacaridose III/terapia , Células Fotorreceptoras/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Retina/fisiologia , Distribuição Tecidual , Transdução Genética
7.
Hum Gene Ther ; 35(7-8): 232-242, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37212263

RESUMO

Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disease caused by a mutation in the IDS gene, resulting in deficiency of the enzyme iduronate-2-sulfatase (IDS) causing heparan sulfate (HS) and dermatan sulfate (DS) accumulation in all cells. This leads to skeletal and cardiorespiratory disease with severe neurodegeneration in two thirds of sufferers. Enzyme replacement therapy is ineffective at treating neurological disease, as intravenously delivered IDS is unable to cross the blood-brain barrier (BBB). Hematopoietic stem cell transplant is also unsuccessful, presumably due to insufficient IDS enzyme production from transplanted cells engrafting in the brain. We used two different peptide sequences (rabies virus glycoprotein [RVG] and gh625), both previously published as BBB-crossing peptides, fused to IDS and delivered via hematopoietic stem cell gene therapy (HSCGT). HSCGT with LV.IDS.RVG and LV.IDS.gh625 was compared with LV.IDS.ApoEII and LV.IDS in MPS II mice at 6 months post-transplant. Levels of IDS enzyme activity in the brain and peripheral tissues were lower in LV.IDS.RVG- and LV.IDS.gh625-treated mice than in LV.IDS.ApoEII- and LV.IDS-treated mice, despite comparable vector copy numbers. Microgliosis, astrocytosis, and lysosomal swelling were partially normalized in MPS II mice treated with LV.IDS.RVG and LV.IDS.gh625. Skeletal thickening was normalized by both treatments to wild-type levels. Although reductions in skeletal abnormalities and neuropathology are encouraging, given the low levels of enzyme activity compared with control tissue from LV.IDS- and LV.IDS.ApoEII-transplanted mice, the RVG and gh625 peptides are unlikely to be ideal candidates for HSCGT in MPS II and are inferior to the ApoEII peptide that we have previously demonstrated to be more effective at correcting MPS II disease than IDS alone.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Doenças do Sistema Nervoso , Vírus da Raiva , Camundongos , Animais , Mucopolissacaridose II/genética , Mucopolissacaridose II/terapia , Ácido Idurônico , Iduronato Sulfatase/genética , Glicoproteínas/genética , Peptídeos
8.
Blood Adv ; 8(3): 766-779, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38147624

RESUMO

ABSTRACT: It is still not fully understood how genetic haploinsufficiency in del(5q) myelodysplastic syndrome (MDS) contributes to malignant transformation of hematopoietic stem cells. We asked how compound haploinsufficiency for Csnk1a1 and Egr1 in the common deleted region on chromosome 5 affects hematopoietic stem cells. Additionally, Trp53 was disrupted as the most frequently comutated gene in del(5q) MDS using CRISPR/Cas9 editing in hematopoietic progenitors of wild-type (WT), Csnk1a1-/+, Egr1-/+, Csnk1a1/Egr1-/+ mice. A transplantable acute leukemia only developed in the Csnk1a1-/+Trp53-edited recipient. Isolated blasts were indefinitely cultured ex vivo and gave rise to leukemia after transplantation, providing a tool to study disease mechanisms or perform drug screenings. In a small-scale drug screening, the collaborative effect of Csnk1a1 haploinsufficiency and Trp53 sensitized blasts to the CSNK1 inhibitor A51 relative to WT or Csnk1a1 haploinsufficient cells. In vivo, A51 treatment significantly reduced blast counts in Csnk1a1 haploinsufficient/Trp53 acute leukemias and restored hematopoiesis in the bone marrow. Transcriptomics on blasts and their normal counterparts showed that the derived leukemia was driven by MAPK and Myc upregulation downstream of Csnk1a1 haploinsufficiency cooperating with a downregulated p53 axis. A collaborative effect of Csnk1a1 haploinsufficiency and p53 loss on MAPK and Myc upregulation was confirmed on the protein level. Downregulation of Myc protein expression correlated with efficient elimination of blasts in A51 treatment. The "Myc signature" closely resembled the transcriptional profile of patients with del(5q) MDS with TP53 mutation.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Animais , Humanos , Camundongos , Medula Óssea/metabolismo , Deleção Cromossômica , Haploinsuficiência , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
9.
Cell Rep ; 43(1): 113608, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38117649

RESUMO

The role of hematopoietic Hedgehog signaling in myeloproliferative neoplasms (MPNs) remains incompletely understood despite data suggesting that Hedgehog (Hh) pathway inhibitors have therapeutic activity in patients. We aim to systematically interrogate the role of canonical vs. non-canonical Hh signaling in MPNs. We show that Gli1 protein levels in patient peripheral blood mononuclear cells (PBMCs) mark fibrotic progression and that, in murine MPN models, absence of hematopoietic Gli1, but not Gli2 or Smo, significantly reduces MPN phenotype and fibrosis, indicating that GLI1 in the MPN clone can be activated in a non-canonical fashion. Additionally, we establish that hematopoietic Gli1 has a significant effect on stromal cells, mediated through a druggable MIF-CD74 axis. These data highlight the complex interplay between alterations in the MPN clone and activation of stromal cells and indicate that Gli1 represents a promising therapeutic target in MPNs, particularly that Hh signaling is dispensable for normal hematopoiesis.


Assuntos
Antineoplásicos , Transtornos Mieloproliferativos , Neoplasias , Humanos , Camundongos , Animais , Proteínas Hedgehog/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo , Leucócitos Mononucleares/metabolismo , Hematopoese
10.
Mol Ther Methods Clin Dev ; 31: 101127, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37920237

RESUMO

Mucopolysaccharidosis type II (MPSII) is a pediatric lysosomal storage disease caused by deficiencies in the IDS (iduronate-2-sulfatase) gene resulting in accumulation of glycosaminoglycans, multisystem disease, and profound neurodegeneration in severe forms. Although enzyme replacement therapy is available for somatic forms of disease, the inability of native IDS to pass the blood-brain barrier renders it ineffective for the brain. We previously demonstrated the short-term efficacy of a brain-targeted hematopoietic stem cell gene therapy approach to treat MPSII mice using lentiviral IDS fused to the blood-brain-barrier-crossing peptide ApoEII (IDS.ApoEII) in comparison with a lentivirus expressing native IDS and an unmanipulated bone marrow transplant. Here we evaluated the longevity of disease correction for 12-16 months following treatment. We observed sustained IDS enzyme activity in organs of long-term IDS.ApoEII-treated MPSII mice, similar to those analyzed 6 months post-treatment, with continued clearance of storage material in the brain and peripheral organs, maintained correction of astrogliosis, microgliosis, and correction of altered cytokines and chemokines. IDS.ApoEII also significantly reduced retinal atrophy, characteristic of MPSII. Overall, IDS.ApoEII resulted in systemic prevention of the MPSII phenotype, with no observed toxicity following treatment. This provides evidence of the sustained efficacy and safety of this treatment ahead of a recently opened clinical trial.

11.
Leukemia ; 37(2): 255-264, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36434065

RESUMO

Myelofibrosis (MF) is a myeloproliferative disorder that exhibits considerable biological and clinical heterogeneity. At the two ends of the disease spectrum are the myelodepletive or cytopenic phenotype and the myeloproliferative phenotype. The cytopenic phenotype has a high prevalence in primary MF (PMF) and is characterized by low blood counts. The myeloproliferative phenotype is typically associated with secondary MF (SMF), mild anemia, minimal need for transfusion support, and normal to mild thrombocytopenia. Differences in somatic driver mutations and allelic burden, as well as the acquisition of non-driver mutations further influences these phenotypic differences, prognosis, and response to therapies such as JAK2 inhibitors. The outcome of patients with the cytopenic phenotype are comparatively worse and frequently pose a challenge to treat given the inherent exacerbation of cytopenias. Recent data indicate that an innate immune deregulated state that hinges on the myddosome-IRAK-NFκB axis favors the cytopenic myelofibrosis phenotype and offers opportunity for novel treatment approaches. We will review the biological and clinical features of the MF disease spectrum and associated treatment considerations.


Assuntos
Transtornos Mieloproliferativos , Mielofibrose Primária , Trombocitopenia , Humanos , Mielofibrose Primária/genética , Mielofibrose Primária/terapia , Transtornos Mieloproliferativos/genética , Prognóstico , Fenótipo , Janus Quinase 2/genética
12.
Blood Adv ; 6(6): 1780-1796, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35016204

RESUMO

How genetic haploinsufficiency contributes to the clonal dominance of hematopoietic stem cells (HSCs) in del(5q) myelodysplastic syndrome (MDS) remains unresolved. Using a genetic barcoding strategy, we performed a systematic comparison on genes implicated in the pathogenesis of del(5q) MDS in direct competition with each other and wild-type (WT) cells with single-clone resolution. Csnk1a1 haploinsufficient HSCs expanded (oligo)clonally and outcompeted all other tested genes and combinations. Csnk1a1-/+ multipotent progenitors showed a proproliferative gene signature and HSCs showed a downregulation of inflammatory signaling/immune response. In validation experiments, Csnk1a1-/+ HSCs outperformed their WT counterparts under a chronic inflammation stimulus, also known to be caused by neighboring genes on chromosome 5. We therefore propose a crucial role for Csnk1a1 haploinsufficiency in the selective advantage of 5q-HSCs, implemented by creation of a unique competitive advantage through increased HSC self-renewal and proliferation capacity, as well as increased fitness under inflammatory stress.


Assuntos
Deleção Cromossômica , Síndromes Mielodisplásicas , Haploinsuficiência , Células-Tronco Hematopoéticas/patologia , Humanos , Síndromes Mielodisplásicas/patologia
13.
STAR Protoc ; 2(2): 100538, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34027494

RESUMO

Bone marrow (BM) mesenchymal stromal cells play an important role in regulating stem cell quiescence and homeostasis; they are also key contributors to various hematological malignancies. However, human bone marrow stromal cells are difficult to isolate and prone to damage during isolation. This protocol describes a combination of mechanical and enzymatic isolation of BM stromal cells from human BM biopsies, followed by FACS sorting to separate stromal sub-populations including mesenchymal stromal cells, fibroblasts, and Schwann cells for single-cell RNA sequencing. For complete details on the use and execution of this protocol, please refer to Leimkühler et al. (2020).


Assuntos
Medula Óssea/patologia , Separação Celular/métodos , Células-Tronco Mesenquimais/citologia , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Biópsia , Humanos
14.
Cell Stem Cell ; 28(4): 637-652.e8, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33301706

RESUMO

Functional contributions of individual cellular components of the bone-marrow microenvironment to myelofibrosis (MF) in patients with myeloproliferative neoplasms (MPNs) are incompletely understood. We aimed to generate a comprehensive map of the stroma in MPNs/MFs on a single-cell level in murine models and patient samples. Our analysis revealed two distinct mesenchymal stromal cell (MSC) subsets as pro-fibrotic cells. MSCs were functionally reprogrammed in a stage-dependent manner with loss of their progenitor status and initiation of differentiation in the pre-fibrotic and acquisition of a pro-fibrotic and inflammatory phenotype in the fibrotic stage. The expression of the alarmin complex S100A8/S100A9 in MSC marked disease progression toward the fibrotic phase in murine models and in patient stroma and plasma. Tasquinimod, a small-molecule inhibiting S100A8/S100A9 signaling, significantly ameliorated the MPN phenotype and fibrosis in JAK2V617F-mutated murine models, highlighting that S100A8/S100A9 is an attractive therapeutic target in MPNs.


Assuntos
Células-Tronco Mesenquimais , Transtornos Mieloproliferativos , Mielofibrose Primária , Alarminas , Animais , Medula Óssea , Humanos , Camundongos
15.
Hum Gene Ther ; 30(9): 1052-1066, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31020862

RESUMO

Patients with the lysosomal storage disease mucopolysaccharidosis IIIA (MPSIIIA) lack the lysosomal enzyme N-sulfoglucosamine sulfohydrolase (SGSH), one of the many enzymes involved in degradation of heparan sulfate. Build-up of un-degraded heparan sulfate results in severe progressive neurodegeneration for which there is currently no treatment. Experimental gene therapies based on gene addition are currently being explored. Following preclinical evaluation in MPSIIIA mice, an adeno-associated virus vector of serotype rh10 designed to deliver SGSH and sulfatase modifying factor 1 (SAF301) was trialed in four MPSIIIA patients, showing good tolerance and absence of adverse events with some improvements in neurocognitive measures. This study aimed to improve SAF301 further by removing sulfatase modifying factor 1 (SUMF1) and assessing if expression of this gene is needed to increase the SGSH enzyme activity (SAF301b). Second, the murine phosphoglycerate kinase (PGK) promotor was exchanged with a chicken beta actin/CMV composite (CAG) promotor (SAF302) to see if SGSH expression levels could be boosted further. The three different vectors were administered to MPSIIIA mice via intracranial injection, and SGSH expression levels were compared 4 weeks post treatment. Removal of SUMF1 resulted in marginal reductions in enzyme activity. However, promotor exchange significantly increased the amount of SGSH expressed in the brain, leading to superior therapeutic correction with SAF302. Biodistribution of SAF302 was further assessed using green fluorescent protein (GFP), indicating that vector spread was limited to the area around the injection tract. Further modification of the injection strategy to a single depth with higher injection volume increased vector distribution, leading to more widespread GFP distribution and sustained expression, suggesting this approach should be adopted in future trials.


Assuntos
Dependovirus/genética , Terapia Genética , Vetores Genéticos/genética , Mucopolissacaridose III/genética , Mucopolissacaridose III/fisiopatologia , Animais , Biomarcadores , Corpo Estriado/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Ativação Enzimática , Imunofluorescência , Expressão Gênica , Ordem dos Genes , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/isolamento & purificação , Hidrolases/genética , Camundongos , Mucopolissacaridose III/metabolismo , Mucopolissacaridose III/terapia , Neurônios/metabolismo , Especificidade de Órgãos/genética , Transdução Genética , Transgenes , Resultado do Tratamento
16.
EMBO Mol Med ; 10(7)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29884617

RESUMO

The pediatric lysosomal storage disorder mucopolysaccharidosis type II is caused by mutations in IDS, resulting in accumulation of heparan and dermatan sulfate, causing severe neurodegeneration, skeletal disease, and cardiorespiratory disease. Most patients manifest with cognitive symptoms, which cannot be treated with enzyme replacement therapy, as native IDS does not cross the blood-brain barrier. We tested a brain-targeted hematopoietic stem cell gene therapy approach using lentiviral IDS fused to ApoEII (IDS.ApoEII) compared to a lentivirus expressing normal IDS or a normal bone marrow transplant. In mucopolysaccharidosis II mice, all treatments corrected peripheral disease, but only IDS.ApoEII mediated complete normalization of brain pathology and behavior, providing significantly enhanced correction compared to IDS. A normal bone marrow transplant achieved no brain correction. Whilst corrected macrophages traffic to the brain, secreting IDS/IDS.ApoEII enzyme for cross-correction, IDS.ApoEII was additionally more active in plasma and was taken up and transcytosed across brain endothelia significantly better than IDS via both heparan sulfate/ApoE-dependent receptors and mannose-6-phosphate receptors. Brain-targeted hematopoietic stem cell gene therapy provides a promising therapy for MPS II patients.


Assuntos
Transplante de Medula Óssea , Terapia Genética , Glicoproteínas/genética , Mucopolissacaridose II/terapia , Transplante de Células-Tronco , Animais , Encéfalo/metabolismo , Feminino , Vetores Genéticos , Glicoproteínas/administração & dosagem , Glicoproteínas/uso terapêutico , Humanos , Lentivirus/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL
17.
PLoS One ; 12(2): e0172435, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28207863

RESUMO

Severe mucopolysaccharidosis type II (MPS II) is a progressive lysosomal storage disease caused by mutations in the IDS gene, leading to a deficiency in the iduronate-2-sulfatase enzyme that is involved in heparan sulphate and dermatan sulphate catabolism. In constitutive form, MPS II is a multi-system disease characterised by progressive neurocognitive decline, severe skeletal abnormalities and hepatosplenomegaly. Although enzyme replacement therapy has been approved for treatment of peripheral organs, no therapy effectively treats the cognitive symptoms of the disease and novel therapies are in development to remediate this. Therapeutic efficacy and subsequent validation can be assessed using a variety of outcome measures that are translatable to clinical practice, such as behavioural measures. We sought to consolidate current knowledge of the cognitive, skeletal and motor abnormalities present in the MPS II mouse model by performing time course behavioural examinations of working memory, anxiety, activity levels, sociability and coordination and balance, up to 8 months of age. Cognitive decline associated with alterations in spatial working memory is detectable at 8 months of age in MPS II mice using spontaneous alternation, together with an altered response to novel environments and anxiolytic behaviour in the open-field. Coordination and balance on the accelerating rotarod were also significantly worse at 8 months, and may be associated with skeletal changes seen in MPS II mice. We demonstrate that the progressive nature of MPS II disease is also seen in the mouse model, and that cognitive and motor differences are detectable at 8 months of age using spontaneous alternation, the accelerating rotarod and the open-field tests. This study establishes neurological, motor and skeletal measures for use in pre-clinical studies to develop therapeutic approaches in MPS II.


Assuntos
Comportamento Animal , Modelos Animais de Doenças , Atividade Motora , Transtornos dos Movimentos/fisiopatologia , Mucopolissacaridose II/fisiopatologia , Testes Neuropsicológicos , Fatores Etários , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transtornos dos Movimentos/etiologia , Mucopolissacaridose II/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA