Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 37(41): 9939-9944, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28912159

RESUMO

Declarative memory recall is thought to involve the reinstatement of neural activity patterns that occurred previously during encoding. Consistent with this view, greater similarity between patterns of activity recorded during encoding and retrieval has been found to predict better memory performance in a number of studies. Recent models have argued that neural oscillations may be crucial to reinstatement for successful memory retrieval. However, to date, no causal evidence has been provided to support this theory, nor has the impact of oscillatory electrical brain stimulation during encoding and retrieval been assessed. To explore this we used transcranial alternating current stimulation over the left dorsolateral prefrontal cortex of human participants [n = 70, 45 females; age mean (SD) = 22.12 (2.16)] during a declarative memory task. Participants received either the same frequency during encoding and retrieval (60-60 or 90-90 Hz) or different frequencies (60-90 or 90-60 Hz). When frequencies matched there was a significant memory improvement (at both 60 and 90 Hz) relative to sham stimulation. No improvement occurred when frequencies mismatched. Our results provide support for the role of oscillatory reinstatement in memory retrieval.SIGNIFICANCE STATEMENT Recent neurobiological models of memory have argued that large-scale neural oscillations are reinstated to support successful memory retrieval. Here we used transcranial alternating current stimulation (tACS) to test these models. tACS has recently been shown to induce neural oscillations at the frequency stimulated. We stimulated over the left dorsolateral prefrontal cortex during a declarative memory task involving learning a set of words. We found that tACS applied at the same frequency during encoding and retrieval enhances memory. We also find no difference between the two applied frequencies. Thus our results are consistent with the proposal that reinstatement of neural oscillations during retrieval supports successful memory retrieval.


Assuntos
Encéfalo/fisiologia , Memória/fisiologia , Rememoração Mental/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Feminino , Humanos , Masculino , Modelos Neurológicos , Córtex Pré-Frontal/fisiologia , Desempenho Psicomotor/fisiologia , Adulto Jovem
2.
Neuroimage ; 149: 415-423, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28179164

RESUMO

The ability to introspectively evaluate our experiences to form accurate metacognitive beliefs, or insight, is an essential component of decision-making. Previous research suggests individuals vary substantially in their level of insight, and that this variation is related to brain volume and function, particularly in the anterior prefrontal cortex (aPFC). However, the neurobiological mechanisms underlying these effects are unclear, as qualitative, macroscopic measures such as brain volume can be related to a variety of microstructural features. Here we leverage a high-resolution (800µm isotropic) multi-parameter mapping technique in 48 healthy individuals to delineate quantitative markers of in vivo histological features underlying metacognitive ability. Specifically, we examined how neuroimaging markers of local grey matter myelination and iron content relate to insight as measured by a signal-theoretic model of subjective confidence. Our results revealed a pattern of microstructural correlates of perceptual metacognition in the aPFC, precuneus, hippocampus, and visual cortices. In particular, we extend previous volumetric findings to show that right aPFC myeloarchitecture positively relates to metacognitive insight. In contrast, decreased myelination in the left hippocampus correlated with better metacognitive insight. These results highlight the ability of quantitative neuroimaging to reveal novel brain-behaviour correlates and may motivate future research on their environmental and developmental underpinnings.


Assuntos
Hipocampo/fisiologia , Metacognição/fisiologia , Córtex Pré-Frontal/fisiologia , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Fibras Nervosas Mielinizadas/fisiologia , Adulto Jovem
3.
J Vis ; 13(8)2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23857951

RESUMO

We examined how crowding (the breakdown of object recognition in the periphery caused by interference from "clutter") depends on the global arrangement of target and distracting flanker elements. Specifically we probed orientation discrimination using a near-vertical target Gabor flanked by two vertical distractor Gabors (one above and one below the target). By applying variable (opposite-sign) horizontal offsets to the positions of the two flankers we arranged the elements so that on some trials they formed contours with the target and on others they did not. While the presence of flankers generally elevated orientation discrimination thresholds for the target we observe maximal crowding not when flanker and targets were co-aligned but when a small spatial offset was applied to flanker location, so that contours formed between flanker and targets only when the target orientation was cued. We also report that observers' orientation judgments are biased, with target orientation appearing either attracted or repulsed by the global/contour orientation. A second experiment reveals that the sign of this effect is dependent both on observer and on eccentricity. In general, the magnitude of repulsion is reduced with eccentricity but whether this becomes attraction (of element orientation to contour orientation) is dependent on observer. We note however that across observers and eccentricities, the magnitude of repulsion correlates positively with the amount of release from crowding observed with co-aligned targets and flankers, supporting the notion of fluctuating bias as the basis for elevated crowding within contours.


Assuntos
Percepção de Forma/fisiologia , Orientação/fisiologia , Comportamento Espacial/fisiologia , Sinais (Psicologia) , Discriminação Psicológica , Humanos
4.
Neuropsychologia ; 128: 332-339, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29630916

RESUMO

Transcranial direct current stimulation (tDCS) and transcranial random noise stimulation (tRNS) have been claimed to produce many remarkable enhancements in perception, cognition, learning and numerous clinical conditions. The physiological basis of the claims for tDCS rests on the finding that 1 mA of unilateral anodal stimulation increases cortical excitation and 1 mA of cathodal produces inhibition. Here we show that these classic excitatory and inhibitory effects do not hold for the bilateral stimulation or 2 mA intensity conditions favoured in cognitive enhancement experiments. This is important because many, including some of the most salient claims are based on experiments using 2 mA bilateral stimulation. The claims for tRNS are also based on unilateral stimulation. Here we show that, again the classic excitatory effects of unilateral tRNS do not extend to the bilateral stimulation preferred in enhancement experiments. Further, we show that the effects of unilateral tRNS do not hold when one merely doubles the stimulation duration. We are forced to two conclusions: (i) that even if all the data on TES enhancements are true, the physiological explanations on which the claims are based are at best not established but at worst false, and (ii) that we cannot explain, scientifically at least, how so many experiments can have obtained data consistent with physiological effects that may not exist.


Assuntos
Cognição/fisiologia , Estimulação Transcraniana por Corrente Contínua , Adolescente , Adulto , Mapeamento Encefálico , Córtex Cerebral/fisiologia , Potencial Evocado Motor/fisiologia , Feminino , Lateralidade Funcional/fisiologia , Humanos , Masculino , Córtex Motor/fisiologia , Ruído , Adulto Jovem
5.
Sci Rep ; 7: 43316, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28256532

RESUMO

Empathy is a key component of our ability to engage and interact with others. In recent years, the neural mechanisms underlying affective and cognitive empathy have garnered intense interest. This work demonstrates that empathy for others depends upon a distributed network of regions such as the insula, parietal cortex, and somatosensory areas, which are also activated when we ourselves experience an empathized-with emotion (e.g., pain). Individuals vary markedly in their ability to empathize with others, which predicts the tendency to help others and relates to individual differences in the neuroanatomy of these areas. Here, we use a newly developed, high-resolution (800 µm isotropic), quantitative MRI technique to better elucidate the neuroanatomical underpinnings of individual differences in empathy. Our findings extend previous studies of the neuroanatomical correlates of cognitive and affective empathy. In particular, individual differences in cognitive empathy were associated with markers of myeloarchitectural integrity of the insular cortex, while affective empathy was predicted by a marker of iron content in second somatosensory cortex. These results indicate potential novel biomarkers of trait empathy, suggesting that microstructural features of an empathy and body-related network are crucial for understanding the mental and emotional states of others.


Assuntos
Córtex Cerebral/fisiologia , Empatia/fisiologia , Ferro/metabolismo , Bainha de Mielina/fisiologia , Lobo Parietal/fisiologia , Córtex Somatossensorial/fisiologia , Adulto , Mapeamento Encefálico/instrumentação , Mapeamento Encefálico/métodos , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Individualidade , Imageamento por Ressonância Magnética , Masculino , Bainha de Mielina/ultraestrutura , Neuroimagem , Dor/psicologia , Lobo Parietal/diagnóstico por imagem , Córtex Somatossensorial/diagnóstico por imagem , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA