Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Mol Recognit ; 36(1): e2993, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36112092

RESUMO

Atomic force microscopy (AFM) was used to conduct single-molecule imaging of protein/DNA complexes involved in the regulation of the arabinose operon of Escherichia coli. In the presence of arabinose, the transcription regulatory protein AraC binds to a 38 bp region consisting of the araI1 and araI2 half-sites. The domain positioning of full-length AraC, when bound to DNA, was not previously known. In this study, AraC was combined with 302 and 560 bp DNA and arabinose, deposited on a mica substrate, and imaged with AFM in air. High resolution images of 560 bp DNA, where bound protein was visible, showed that AraC induces a bend in the DNA with an angle 60° ± 12° with a median of 55°. These results are consistent with earlier gel electrophoresis measurements that measured the DNA bend angle based on migration rates. By using known domain structures of AraC, geometric constraints, and contacts determined from biochemical experiments, we developed a model of the tertiary and quaternary structure of DNA-bound AraC in the presence of arabinose. The DNA bend angle predicted by the model is in agreement with the measurement values. We discuss the results in view of other regulatory proteins that cause DNA bending and formation of the open complex to initiate transcription.


Assuntos
Fator de Transcrição AraC , Proteínas de Escherichia coli , Fator de Transcrição AraC/genética , Fator de Transcrição AraC/química , Fator de Transcrição AraC/metabolismo , Proteínas de Escherichia coli/metabolismo , Microscopia de Força Atômica , Citarabina/metabolismo , Proteínas Repressoras/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Proteínas de Bactérias/metabolismo , Arabinose/química , Arabinose/metabolismo , Arabinose/farmacologia , Fatores de Transcrição/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , DNA/metabolismo , Ligação Proteica
2.
J Oral Microbiol ; 16(1): 2322241, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440286

RESUMO

Objectives: To analyze contributions to microbial ecology of Reactive Electrophile Species (RES), including methylglyoxal, generated during glycolysis. Methods: Genetic analyses were performed on the glyoxalase pathway in Streptococcus mutans (SM) and Streptococcus sanguinis (SS), followed by phenotypic assays and transcription analysis. Results: Deleting glyoxalase I (lguL) reduced RES tolerance to a far greater extent in SM than in SS, decreasing the competitiveness of SM against SS. Although SM displays a greater RES tolerance than SS, lguL-null mutants of either species showed similar tolerance; a finding consistent with the ability of methylglyoxal to induce the expression of lguL in SM, but not in SS. A novel paralogue of lguL (named gloA2) was identified in most streptococci. SM mutant ∆gloA2SM showed little change in methylglyoxal tolerance yet a significant growth defect and increased autolysis on fructose, a phenotype reversed by the addition of glutathione, or by the deletion of a fructose: phosphotransferase system (PTS) that generates fructose-1-phosphate (F-1-P). Conclusions: Fructose contributes to RES generation in a PTS-specific manner, and GloA2 may be required to degrade certain RES derived from F-1-P. This study reveals the critical roles of RES in fitness and interbacterial competition and the effects of PTS in modulating RES metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA