Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Hum Reprod ; 34(4): 702-714, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30789661

RESUMO

STUDY QUESTION: Does the uterine vasculature play a localized role in promoting stromal cell decidualization in the human endometrium? SUMMARY ANSWER: Our study demonstrated that hemodynamic forces induced secretion of specific endothelial cell-derived prostanoids that enhanced endometrial perivascular decidualization via a paracrine mechanism. WHAT IS KNOWN ALREADY: Differentiation of stromal cell fibroblasts into the specialized decidua of the placenta is a progesterone-dependent process; however, histologically, it has long been noted that the first morphological signs of decidualization appear in the perivascular stroma. These observations suggest that the human endometrial vasculature plays an active role in promoting stromal differentiation. STUDY DESIGN, SIZE, DURATION: Primary human endometrial stromal cells were co-cultured for 14 days with primary uterine microvascular endothelial cells within a microfluidic Organ-on-Chip model of the endometrium. PARTICIPANTS/MATERIALS, SETTING, METHODS: Cultures were maintained with estradiol and a progestin, with or without continuous laminar perfusion to mimic hemodynamic forces derived from the blood flow. Some cultures additionally received exogenous agonist-mediated challenges. Decidualization in the microfluidic model was assessed morphologically and biochemically. ELISA was used to examine the culture effluent for expression of decidualization markers and prostaglandins. Immunofluorescence was used to monitor cyclooxygenase-2 expression in association with decidualization. MAIN RESULTS AND THE ROLE OF CHANCE: A significantly enhanced stromal decidualization response was observed in the co-cultures when the endothelial cells were stimulated with hemodynamic forces (e.g. laminar shear stress) derived from controlled microfluidic perfusion (<0.001). Furthermore, the enhanced progestin-driven stromal differentiation was mediated via cyclooxygenase-2 and the paracrine action of prostaglandin E2 and prostacyclin. Altogether, these translational findings indicate that the vascular endothelium plays a key physiologic role during the early events of perivascular decidualization in the human endometrium. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: This report is largely an in vitro study. Although we were able to experimentally mimic hemodynamic forces in our microfluidic model, we have not yet determined the contribution of additional cell types to the decidualization process or determined the precise physiological rates of shear stress that the microvasculature of the endometrium undergoes in vivo. WIDER IMPLICATIONS OF THE FINDINGS: Identification of specific endothelial-derived prostaglandins and their role during endometrial reproductive processes may have clinical utility as therapeutic targets for reproductive disorders such as infertility, endometriosis, adenomyosis, pre-eclampsia and poor pregnancy outcomes. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the Veterans Affairs (I01 BX002853), the Bill and Melinda Gates Foundation Grand Challenges Exploration (OPP1159411), the Environmental Toxicology Training Grant (NIH T32 ES007028) and the Environmental Protection Agency STAR Center Grant (83573601). CONFLICT OF INTEREST: The authors report no conflicts of interest. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Decídua/irrigação sanguínea , Decídua/metabolismo , Dinoprostona/metabolismo , Células Endoteliais/metabolismo , Epoprostenol/metabolismo , Hemodinâmica/fisiologia , Microfluídica/instrumentação , Adolescente , Adulto , Arteríolas/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Técnicas de Cocultura , Ciclo-Oxigenase 2/metabolismo , Decídua/citologia , Feminino , Fibroblastos/metabolismo , Humanos , Microfluídica/métodos , Pessoa de Meia-Idade , Comunicação Parácrina/fisiologia , Células Estromais/metabolismo , Adulto Jovem
2.
Med ; 4(8): 554-579.e9, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37572651

RESUMO

BACKGROUND: The human endometrium undergoes recurring cycles of growth, differentiation, and breakdown in response to sex hormones. Dysregulation of epithelial-stromal communication during hormone-mediated signaling may be linked to myriad gynecological disorders for which treatments remain inadequate. Here, we describe a completely defined, synthetic extracellular matrix that enables co-culture of human endometrial epithelial and stromal cells in a manner that captures healthy and disease states across a simulated menstrual cycle. METHODS: We parsed cycle-dependent endometrial integrin expression and matrix composition to define candidate cell-matrix interaction cues for inclusion in a polyethylene glycol (PEG)-based hydrogel crosslinked with matrix metalloproteinase-labile peptides. We semi-empirically screened a parameter space of biophysical and molecular features representative of the endometrium to define compositions suitable for hormone-driven expansion and differentiation of epithelial organoids, stromal cells, and co-cultures of the two cell types. FINDINGS: Each cell type exhibited characteristic morphological and molecular responses to hormone changes when co-encapsulated in hydrogels tuned to a stiffness regime similar to the native tissue and functionalized with a collagen-derived adhesion peptide (GFOGER) and a fibronectin-derived peptide (PHSRN-K-RGD). Analysis of cell-cell crosstalk during interleukin 1B (IL1B)-induced inflammation revealed dysregulation of epithelial proliferation mediated by stromal cells. CONCLUSIONS: Altogether, we demonstrate the development of a fully synthetic matrix to sustain the dynamic changes of the endometrial microenvironment and support its applications to understand menstrual health and endometriotic diseases. FUNDING: This work was supported by The John and Karine Begg Foundation, the Manton Foundation, and NIH U01 (EB029132).


Assuntos
Endométrio , Matriz Extracelular , Feminino , Humanos , Técnicas de Cocultura , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Endométrio/metabolismo , Peptídeos/análise , Peptídeos/química , Peptídeos/metabolismo , Hormônios/análise , Hormônios/metabolismo
3.
Semin Reprod Med ; 38(2-03): 179-196, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-33176387

RESUMO

Adenomyosis remains an enigmatic disease in the clinical and research communities. The high prevalence, diversity of morphological and symptomatic presentations, array of potential etiological explanations, and variable response to existing interventions suggest that different subgroups of patients with distinguishable mechanistic drivers of disease may exist. These factors, combined with the weak links to genetic predisposition, make the entire spectrum of the human condition challenging to model in animals. Here, after an overview of current approaches, a vision for applying physiomimetic modeling to adenomyosis is presented. Physiomimetics combines a system's biology analysis of patient populations to generate hypotheses about mechanistic bases for stratification with in vitro patient avatars to test these hypotheses. A substantial foundation for three-dimensional (3D) tissue engineering of adenomyosis lesions exists in several disparate areas: epithelial organoid technology; synthetic biomaterials matrices for epithelial-stromal coculture; smooth muscle 3D tissue engineering; and microvascular tissue engineering. These approaches can potentially be combined with microfluidic platform technologies to model the lesion microenvironment and can potentially be coupled to other microorgan systems to examine systemic effects. In vitro patient-derived models are constructed to answer specific questions leading to target identification and validation in a manner that informs preclinical research and ultimately clinical trial design.


Assuntos
Adenomiose/patologia , Modelos Biológicos , Engenharia Tecidual/métodos , Endométrio/patologia , Feminino , Humanos , Miométrio/patologia
4.
Biomaterials ; 254: 120125, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32502894

RESUMO

Epithelial organoids derived from human donor tissues are important tools in fields ranging from regenerative medicine to drug discovery. Organoid culture requires expansion of stem/progenitor cells in Matrigel, a tumor-derived extracellular matrix (ECM). An alternative completely synthetic ECM could improve reproducibility, clarify mechanistic phenomena, and enable human implantation of organoids. We designed synthetic ECMs with tunable biomolecular and biophysical properties to identify gel compositions supporting human tissue-derived stem/progenitor epithelial cells as enteroids and organoids starting with single cells rather than tissue fragments. The synthetic ECMs consist of 8-arm PEG-macromers modified with ECM-binding peptides and different combinations of integrin-binding peptides, crosslinked with peptides susceptible to matrix metalloprotease (MMP) degradation, and tuned to exhibit a range of biophysical properties. A gel containing an α2ß1 integrin-binding peptide (GFOGER) and matrix binder peptides grafted to a 20 kDa 8-arm PEG macromer showed the most robust support of human duodenal and colon enteroids and endometrial organoids. In this synthetic ECM, human intestinal enteroids and endometrial organoids emerge from single cells and show cell-specific and apicobasal polarity markers upon differentiation. Intestinal enteroids, in addition, retain their proliferative capacity, are functionally responsive to basolateral stimulation, express canonical markers of intestinal crypt cells including Paneth cells, and can be serially passaged. The success of this synthetic ECM in supporting human postnatal organoid culture from multiple different donors and from both the intestine and endometrium suggests it may be broadly useful for other epithelial organoid culture.


Assuntos
Intestinos , Organoides , Endométrio , Feminino , Humanos , Reprodutibilidade dos Testes , Células-Tronco
5.
Br J Pharmacol ; 176(12): 2015-2027, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-29774543

RESUMO

BACKGROUND AND PURPOSE: Monocytes play a critical role in hypertension. The purpose of our study was to use an unbiased approach to determine whether hypertensive individuals on conventional therapy exhibit an altered monocyte gene expression profile and to perform validation studies of selected genes to identify novel therapeutic targets for hypertension. EXPERIMENTAL APPROACH: Next generation RNA sequencing identified differentially expressed genes in a small discovery cohort of normotensive and hypertensive individuals. Several of these genes were further investigated for association with hypertension in multiple validation cohorts using qRT-PCR, regression analysis, phenome-wide association study and case-control analysis of a missense polymorphism. KEY RESULTS: We identified 60 genes that were significantly differentially expressed in hypertensive monocytes, many of which are related to IL-1ß. Uni- and multivariate regression analyses of the expression of these genes with mean arterial pressure (MAP) revealed four genes that significantly correlated with MAP in normotensive and/or hypertensive individuals. Of these, lactoferrin (LTF), peptidoglycan recognition protein 1 and IL-18 receptor accessory protein (IL18RAP) remained significantly elevated in peripheral monocytes of hypertensive individuals in a separate validation cohort. Interestingly, IL18RAP expression associated with MAP in a cohort of African Americans. Furthermore, homozygosity for a missense single nucleotide polymorphism in LTF that decreases antimicrobial function and increases protein levels (rs1126478) was over-represented in patients with hypertension relative to controls (odds ratio 1.16). CONCLUSIONS AND IMPLICATIONS: These data demonstrate that monocytes exhibit enhanced pro-inflammatory gene expression in hypertensive individuals and identify IL18RAP and LTF as potential novel mediators of human hypertension. LINKED ARTICLES: This article is part of a themed section on Immune Targets in Hypertension. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.12/issuetoc.


Assuntos
Anti-Hipertensivos/farmacologia , Hipertensão/tratamento farmacológico , Lactoferrina/farmacologia , Monócitos/metabolismo , Receptores de Interleucina-18/genética , Negro ou Afro-Americano , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/imunologia , Estudos de Casos e Controles , Perfilação da Expressão Gênica , Humanos , Hipertensão/imunologia , Análise Multivariada , Receptores de Interleucina-18/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA
6.
Am J Reprod Immunol ; 80(4): e13032, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30084522

RESUMO

PROBLEM: Bacterial chorioamnionitis causes adverse pregnancy outcomes, yet host-microbial interactions are not well characterized within gestational membranes. The decidua, the outermost region of the membranes, is a potential point of entry for bacteria ascending from the vagina to cause chorioamnionitis. We sought to determine whether paracrine communication between decidual stromal cells and macrophages shaped immune responses to microbial sensing. METHOD OF STUDY: Decidual cell-macrophage interactions were modeled in vitro utilizing decidualized, telomerase-immortalized human endometrial stromal cells (dTHESCs) and phorbol ester-differentiated THP-1 macrophage-like cells. The production of inflammatory mediators in response to LPS was monitored by ELISA for both cell types, while phagocytosis of bacterial pathogens (Escherichia coli and Group B Streptococcus (GBS)) was measured in THP-1 cells or primary human placental macrophages. Diclofenac, a non-selective cyclooxygenase inhibitor, and prostaglandin E2 (PGE2 ) were utilized to interrogate prostaglandins as decidual cell-derived paracrine immunomodulators. A mouse model of ascending chorioamnionitis caused by GBS was utilized to assess the colocalization of bacteria and macrophages in vivo and assess PGE2 production. RESULTS: In response to LPS, dTHESC and THP-1 coculture demonstrated enhancement of most inflammatory mediators, but a potent suppression of macrophage TNF-α generation was observed. This appeared to reflect a paracrine-mediated effect of decidual cell-derived PGE2 . In mice with GBS chorioamnionitis, macrophages accumulated at sites of bacterial invasion with increased PGE2 in amniotic fluid, suggesting such paracrine effects might hold relevance in vivo. CONCLUSION: These data suggest key roles for decidual stromal cells in modulating tissue responses to microbial threat through release of PGE2 .


Assuntos
Corioamnionite/imunologia , Decídua/imunologia , Escherichia coli/imunologia , Macrófagos/imunologia , Complicações Infecciosas na Gravidez/imunologia , Prostaglandinas E/imunologia , Streptococcus agalactiae/imunologia , Animais , Linhagem Celular , Corioamnionite/microbiologia , Citocinas/metabolismo , Decídua/citologia , Decídua/microbiologia , Modelos Animais de Doenças , Implantação do Embrião/fisiologia , Infecções por Escherichia coli/imunologia , Feminino , Humanos , Lipopolissacarídeos/imunologia , Camundongos , Comunicação Parácrina/imunologia , Fagocitose/imunologia , Gravidez , Complicações Infecciosas na Gravidez/microbiologia , Complicações Infecciosas na Gravidez/patologia , Resultado da Gravidez , Infecções Estreptocócicas/imunologia
7.
Cardiovasc Res ; 114(11): 1547-1563, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29800237

RESUMO

Aims: Monocytes play an important role in hypertension. Circulating monocytes in humans exist as classical, intermediate, and non-classical forms. Monocyte differentiation can be influenced by the endothelium, which in turn is activated in hypertension by mechanical stretch. We sought to examine the role of increased endothelial stretch and hypertension on monocyte phenotype and function. Methods and results: Human monocytes were cultured with confluent human aortic endothelial cells undergoing either 5% or 10% cyclical stretch. We also characterized circulating monocytes in normotensive and hypertensive humans. In addition, we quantified accumulation of activated monocytes and monocyte-derived cells in aortas and kidneys of mice with Angiotensin II-induced hypertension. Increased endothelial stretch enhanced monocyte conversion to CD14++CD16+ intermediate monocytes and monocytes bearing the CD209 marker and markedly stimulated monocyte mRNA expression of interleukin (IL)-6, IL-1ß, IL-23, chemokine (C-C motif) ligand 4, and tumour necrosis factor α. STAT3 in monocytes was activated by increased endothelial stretch. Inhibition of STAT3, neutralization of IL-6 and scavenging of hydrogen peroxide prevented formation of intermediate monocytes in response to increased endothelial stretch. We also found evidence that nitric oxide (NO) inhibits formation of intermediate monocytes and STAT3 activation. In vivo studies demonstrated that humans with hypertension have increased intermediate and non-classical monocytes and that intermediate monocytes demonstrate evidence of STAT3 activation. Mice with experimental hypertension exhibit increased aortic and renal infiltration of monocytes, dendritic cells, and macrophages with activated STAT3. Conclusions: These findings provide insight into how monocytes are activated by the vascular endothelium during hypertension. This is likely in part due to a loss of NO signalling and increased release of IL-6 and hydrogen peroxide by the dysfunctional endothelium and a parallel increase in STAT activation in adjacent monocytes. Interventions to enhance bioavailable NO, reduce IL-6 or hydrogen peroxide production or to inhibit STAT3 may have anti-inflammatory roles in hypertension and related conditions.


Assuntos
Pressão Sanguínea , Diferenciação Celular , Células Endoteliais/metabolismo , Peróxido de Hidrogênio/metabolismo , Hipertensão/metabolismo , Interleucina-6/metabolismo , Monócitos/metabolismo , Fator de Transcrição STAT3/metabolismo , Idoso , Angiotensina II , Animais , Estudos de Casos e Controles , Comunicação Celular , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Feminino , Humanos , Hipertensão/induzido quimicamente , Hipertensão/fisiopatologia , Masculino , Mecanotransdução Celular , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Óxido Nítrico/metabolismo , Fenótipo , Estresse Mecânico
8.
Curr Pharm Des ; 23(40): 6115-6124, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28847303

RESUMO

Preterm birth (PTB) is clinically defined as process of giving birth before 37 weeks of gestation and is a leading cause of death among neonates and children under the age of five. Prematurity remains a critical issue in developed countries, yet our understanding of the pathophysiology of PTB remains largely unknown. Among pregnancy complications, subclinical infections such as chorioamnionitis (CAM) are implicated in up to 70% of PTB cases. Specifically, CAM is characterized by the infection of the fetal membranes that surround the developing fetus and extend from the placenta, and is often associated with preterm, premature rupture of the fetal membranes (PPROM). The fetal membrane plays a key structural role in maintaining the fetal and maternal compartments of the gravid uterus. However, our understanding of the mechanisms of PPROM and the spatio-temporal progress of CAM remains vastly unknown. A lack of human-derived models have hindered our understanding of the mechanism that govern spontaneous PTB. Thus, in this short review, we discuss the emerging microfabrication technologies, specifically, organ-on-chip (OoCs) models, that seek to recapitulate the cellular and molecular context of the gestational membranes in vitro. These models show promise to facilitate the investigation of pathologic mechanisms that drive these disease conditions by mimicking the interactive contribution of the major cell types that make up the microenvironment of the fetal membrane and enable high throughput screening. Herein, we histologically characterize the microenvironment of the fetal membrane as a metric for scaling to recapitulate the functional components of the human fetal membrane. We review the current OoC models of the gravid uterus and conceptualize an "Instrumented Fetal Membrane on a Chip" (IFMOC) design as a prototype for PPROM and CAM research. Lastly, we discuss further applications of these OoC models for toxicological or pharmacological screening and personalized medicine. Fetal membrane OoCs offer an innovative and valuable platform to explore complex interactions between multiple drug types, toxic substances, and/or pathogenic microbes and their potential impacts on pregnancy outcomes. Further work will be required by integrating technological and analytical capabilities in order to characterize the fetal membrane microenvironment for preterm birth research.


Assuntos
Pesquisa Biomédica/instrumentação , Pesquisa Biomédica/métodos , Membranas Extraembrionárias , Nascimento Prematuro , Animais , Feminino , Humanos , Gravidez
9.
Ann Biomed Eng ; 45(7): 1758-1769, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28108942

RESUMO

The endometrium is the inner lining of the uterus. Following specific cyclic hormonal stimulation, endometrial stromal fibroblasts (stroma) and vascular endothelial cells exhibit morphological and biochemical changes to support embryo implantation and regulate vascular function, respectively. Herein, we integrated a resin-based porous membrane in a dual chamber microfluidic device in polydimethylsiloxane that allows long term in vitro co-culture of human endometrial stromal and endothelial cells. This transparent, 2-µm porous membrane separates the two chambers, allows for the diffusion of small molecules and enables high resolution bright field and fluorescent imaging. Within our primary human co-culture model of stromal and endothelial cells, we simulated the temporal hormone changes occurring during an idealized 28-day menstrual cycle. We observed the successful differentiation of stroma into functional decidual cells, determined by morphology as well as biochemically as measured by increased production of prolactin. By controlling the microfluidic properties of the device, we additionally found that shear stress forces promoted cytoskeleton alignment and tight junction formation in the endothelial layer. Finally, we demonstrated that the endometrial perivascular stroma model was sustainable for up to 4 weeks, remained sensitive to steroids and is suitable for quantitative biochemical analysis. Future utilization of this device will allow the direct evaluation of paracrine and endocrine crosstalk between these two cell types as well as studies of immunological events associated with normal vs. disease-related endometrial microenvironments.


Assuntos
Endométrio/irrigação sanguínea , Endométrio/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Membranas Artificiais , Modelos Cardiovasculares , Engenharia Tecidual/métodos , Técnicas de Cultura de Células , Endométrio/citologia , Feminino , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Porosidade
10.
ACS Appl Mater Interfaces ; 8(34): 22629-36, 2016 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-27513606

RESUMO

The basal lamina or basement membrane (BM) is a key physiological system that participates in physicochemical signaling between tissue types. Its formation and function are essential in tissue maintenance, growth, angiogenesis, disease progression, and immunology. In vitro models of the BM (e.g., Boyden and transwell chambers) are common in cell biology and lab-on-a-chip devices where cells require apical and basolateral polarization. Extravasation, intravasation, membrane transport of chemokines, cytokines, chemotaxis of cells, and other key functions are routinely studied in these models. The goal of the present study was to integrate a semipermeable ultrathin polymer membrane with precisely positioned pores of 2 µm diameter in a microfluidic device with apical and basolateral chambers. We selected poly(l-lactic acid) (PLLA), a transparent biocompatible polymer, to prepare the semipermeable ultrathin membranes. The pores were generated by pattern transfer using a three-step method coupling femtosecond laser machining, polymer replication, and spin coating. Each step of the fabrication process was characterized by scanning electron microscopy to investigate reliability of the process and fidelity of pattern transfer. In order to evaluate the compatibility of the fabrication method with organs-on-a-chip technology, porous PLLA membranes were embedded in polydimethylsiloxane (PDMS) microfluidic devices and used to grow human umbilical vein endothelial cells (HUVECS) on top of the membrane with perfusion through the basolateral chamber. Viability of cells, optical transparency of membranes and strong adhesion of PLLA to PDMS were observed, thus confirming the suitability of the prepared membranes for use in organs-on-a-chip devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA