Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Sensors (Basel) ; 23(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36992065

RESUMO

Mobile health (mHealth) utilizes mobile devices, mobile communication techniques, and the Internet of Things (IoT) to improve not only traditional telemedicine and monitoring and alerting systems, but also fitness and medical information awareness in daily life. In the last decade, human activity recognition (HAR) has been extensively studied because of the strong correlation between people's activities and their physical and mental health. HAR can also be used to care for elderly people in their daily lives. This study proposes an HAR system for classifying 18 types of physical activity using data from sensors embedded in smartphones and smartwatches. The recognition process consists of two parts: feature extraction and HAR. To extract features, a hybrid structure consisting of a convolutional neural network (CNN) and a bidirectional gated recurrent unit GRU (BiGRU) was used. For activity recognition, a single-hidden-layer feedforward neural network (SLFN) with a regularized extreme machine learning (RELM) algorithm was used. The experimental results show an average precision of 98.3%, recall of 98.4%, an F1-score of 98.4%, and accuracy of 98.3%, which results are superior to those of existing schemes.


Assuntos
Redes Neurais de Computação , Smartphone , Humanos , Idoso , Algoritmos , Aprendizado de Máquina , Atividades Humanas
2.
Sensors (Basel) ; 22(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36080911

RESUMO

Given video streams, we aim to correctly detect unsegmented signs related to continuous sign language recognition (CSLR). Despite the increase in proposed deep learning methods in this area, most of them mainly focus on using only an RGB feature, either the full-frame image or details of hands and face. The scarcity of information for the CSLR training process heavily constrains the capability to learn multiple features using the video input frames. Moreover, exploiting all frames in a video for the CSLR task could lead to suboptimal performance since each frame contains a different level of information, including main features in the inferencing of noise. Therefore, we propose novel spatio-temporal continuous sign language recognition using the attentive multi-feature network to enhance CSLR by providing extra keypoint features. In addition, we exploit the attention layer in the spatial and temporal modules to simultaneously emphasize multiple important features. Experimental results from both CSLR datasets demonstrate that the proposed method achieves superior performance in comparison with current state-of-the-art methods by 0.76 and 20.56 for the WER score on CSL and PHOENIX datasets, respectively.


Assuntos
Reconhecimento Psicológico , Língua de Sinais , Atenção , Humanos
3.
Sensors (Basel) ; 22(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35336491

RESUMO

Wearing a safety helmet is important in construction and manufacturing industrial activities to avoid unpleasant situations. This safety compliance can be ensured by developing an automatic helmet detection system using various computer vision and deep learning approaches. Developing a deep-learning-based helmet detection model usually requires an enormous amount of training data. However, there are very few public safety helmet datasets available in the literature, in which most of them are not entirely labeled, and the labeled one contains fewer classes. This paper presents the Safety HELmet dataset with 5K images (SHEL5K) dataset, an enhanced version of the SHD dataset. The proposed dataset consists of six completely labeled classes (helmet, head, head with helmet, person with helmet, person without helmet, and face). The proposed dataset was tested on multiple state-of-the-art object detection models, i.e., YOLOv3 (YOLOv3, YOLOv3-tiny, and YOLOv3-SPP), YOLOv4 (YOLOv4 and YOLOv4pacsp-x-mish), YOLOv5-P5 (YOLOv5s, YOLOv5m, and YOLOv5x), the Faster Region-based Convolutional Neural Network (Faster-RCNN) with the Inception V2 architecture, and YOLOR. The experimental results from the various models on the proposed dataset were compared and showed improvement in the mean Average Precision (mAP). The SHEL5K dataset had an advantage over other safety helmet datasets as it contains fewer images with better labels and more classes, making helmet detection more accurate.


Assuntos
Benchmarking , Dispositivos de Proteção da Cabeça , Humanos , Redes Neurais de Computação
4.
Sensors (Basel) ; 21(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925161

RESUMO

Owing to progressive population aging, elderly people (aged 65 and above) face challenges in carrying out activities of daily living, while placement of the elderly in a care facility is expensive and mentally taxing for them. Thus, there is a need to develop their own homes into smart homes using new technologies. However, this raises concerns of privacy and data security for users since it can be handled remotely. Hence, with advancing technologies it is important to overcome this challenge using privacy-preserving and non-intrusive models. For this review, 235 articles were scanned from databases, out of which 31 articles pertaining to in-home technologies that assist the elderly in living independently were shortlisted for inclusion. They described the adoption of various methodologies like different sensor-based mechanisms, wearables, camera-based techniques, robots, and machine learning strategies to provide a safe and comfortable environment to the elderly. Recent innovations have rendered these technologies more unobtrusive and privacy-preserving with increasing use of environmental sensors and less use of cameras and other devices that may compromise the privacy of individuals. There is a need to develop a comprehensive system for smart homes which ensures patient safety, privacy, and data security; in addition, robots should be integrated with the existing sensor-based platforms to assist in carrying out daily activities and therapies as required.


Assuntos
Atividades Cotidianas , Privacidade , Idoso , Envelhecimento , Segurança Computacional , Humanos , Tecnologia
5.
Sensors (Basel) ; 21(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34450809

RESUMO

The recent growth of the elderly population has led to the requirement for constant home monitoring as solitary living becomes popular. This protects older people who live alone from unwanted instances such as falling or deterioration caused by some diseases. However, although wearable devices and camera-based systems can provide relatively precise information about human motion, they invade the privacy of the elderly. One way to detect the abnormal behavior of elderly residents under the condition of maintaining privacy is to equip the resident's house with an Internet of Things system based on a non-invasive binary motion sensor array. We propose to concatenate external features (previous activity and begin time-stamp) along with extracted features with a bi-directional long short-term memory (Bi-LSTM) neural network to recognize the activities of daily living with a higher accuracy. The concatenated features are classified by a fully connected neural network (FCNN). The proposed model was evaluated on open dataset from the Center for Advanced Studies in Adaptive Systems (CASAS) at Washington State University. The experimental results show that the proposed method outperformed state-of-the-art models with a margin of more than 6.25% of the F1 score on the same dataset.


Assuntos
Atividades Cotidianas , Dispositivos Eletrônicos Vestíveis , Idoso , Humanos , Memória de Longo Prazo , Redes Neurais de Computação , Privacidade
6.
Sensors (Basel) ; 21(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946998

RESUMO

Research on the human activity recognition could be utilized for the monitoring of elderly people living alone to reduce the cost of home care. Video sensors can be easily deployed in the different zones of houses to achieve monitoring. The goal of this study is to employ a linear-map convolutional neural network (CNN) to perform action recognition with RGB videos. To reduce the amount of the training data, the posture information is represented by skeleton data extracted from the 300 frames of one film. The two-stream method was applied to increase the accuracy of recognition by using the spatial and motion features of skeleton sequences. The relations of adjacent skeletal joints were employed to build the direct acyclic graph (DAG) matrices, source matrix, and target matrix. Two features were transferred by DAG matrices and expanded as color texture images. The linear-map CNN had a two-dimensional linear map at the beginning of each layer to adjust the number of channels. A two-dimensional CNN was used to recognize the actions. We applied the RGB videos from the action recognition datasets of the NTU RGB+D database, which was established by the Rapid-Rich Object Search Lab, to execute model training and performance evaluation. The experimental results show that the obtained precision, recall, specificity, F1-score, and accuracy were 86.9%, 86.1%, 99.9%, 86.3%, and 99.5%, respectively, in the cross-subject source, and 94.8%, 94.7%, 99.9%, 94.7%, and 99.9%, respectively, in the cross-view source. An important contribution of this work is that by using the skeleton sequences to produce the spatial and motion features and the DAG matrix to enhance the relation of adjacent skeletal joints, the computation speed was faster than the traditional schemes that utilize single frame image convolution. Therefore, this work exhibits the practical potential of real-life action recognition.


Assuntos
Algoritmos , Redes Neurais de Computação , Idoso , Bases de Dados Factuais , Atividades Humanas , Humanos , Esqueleto
7.
Entropy (Basel) ; 23(5)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069994

RESUMO

To prevent disasters and to control and supervise crowds, automated video surveillance has become indispensable. In today's complex and crowded environments, manual surveillance and monitoring systems are inefficient, labor intensive, and unwieldy. Automated video surveillance systems offer promising solutions, but challenges remain. One of the major challenges is the extraction of true foregrounds of pixels representing humans only. Furthermore, to accurately understand and interpret crowd behavior, human crowd behavior (HCB) systems require robust feature extraction methods, along with powerful and reliable decision-making classifiers. In this paper, we describe our approach to these issues by presenting a novel Particles Force Model for multi-person tracking, a vigorous fusion of global and local descriptors, along with a robust improved entropy classifier for detecting and interpreting crowd behavior. In the proposed model, necessary preprocessing steps are followed by the application of a first distance algorithm for the removal of background clutter; true-foreground elements are then extracted via a Particles Force Model. The detected human forms are then counted by labeling and performing cluster estimation, using a K-nearest neighbors search algorithm. After that, the location of all the human silhouettes is fixed and, using the Jaccard similarity index and normalized cross-correlation as a cost function, multi-person tracking is performed. For HCB detection, we introduced human crowd contour extraction as a global feature and a particles gradient motion (PGD) descriptor, along with geometrical and speeded up robust features (SURF) for local features. After features were extracted, we applied bat optimization for optimal features, which also works as a pre-classifier. Finally, we introduced a robust improved entropy classifier for decision making and automated crowd behavior detection in smart surveillance systems. We evaluated the performance of our proposed system on a publicly available benchmark PETS2009 and UMN dataset. Experimental results show that our system performed better compared to existing well-known state-of-the-art methods by achieving higher accuracy rates. The proposed system can be deployed to great benefit in numerous public places, such as airports, shopping malls, city centers, and train stations to control, supervise, and protect crowds.

8.
Sensors (Basel) ; 17(1)2017 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-28117724

RESUMO

This study presents a new ubiquitous emergency medical service system (UEMS) that consists of a ubiquitous tele-diagnosis interface and a traffic guiding subsystem. The UEMS addresses unresolved issues of emergency medical services by managing the sensor wires for eliminating inconvenience for both patients and paramedics in an ambulance, providing ubiquitous accessibility of patients' biosignals in remote areas where the ambulance cannot arrive directly, and offering availability of real-time traffic information which can make the ambulance reach the destination within the shortest time. In the proposed system, patient's biosignals and real-time video, acquired by wireless biosensors and a webcam, can be simultaneously transmitted to an emergency room for pre-hospital treatment via WiMax/3.5 G networks. Performances of WiMax and 3.5 G, in terms of initialization time, data rate, and average end-to-end delay are evaluated and compared. A driver can choose the route of the shortest time among the suggested routes by Google Maps after inspecting the current traffic conditions based on real-time CCTV camera streams and traffic information. The destination address can be inputted vocally for easiness and safety in driving. A series of field test results validates the feasibility of the proposed system for application in real-life scenarios.


Assuntos
Serviços Médicos de Emergência , Ambulâncias , Técnicas Biossensoriais , Redes de Comunicação de Computadores , Tecnologia sem Fio
9.
Disabil Rehabil Assist Technol ; 18(5): 658-672, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-33861684

RESUMO

PURPOSE: Stroke, spinal cord injury and other neuromuscular disorders lead to impairments in the human body. Upper limb impairments, especially hand impairments affect activities of daily living (ADL) and reduce the quality of life. The purpose of this review is to compare and evaluate the available robotic rehabilitation and assistive devices that can lead to motor recovery or maintain the current motor functional level. METHODS: A systematic review was conducted of the literature published in the years from 2016-2021, to focus on the most recent rehabilitation and assistive devices available in the market or research environments. RESULTS: A total of 230 studies published between 2016 and 2021 were identified from various databases. 107 were excluded with various reasons. Twenty-eight studies were taken into detailed review, to determine the efficacy of robotic devices in improving upper limb impairments or maintaining the current level from getting worse. CONCLUSION: It was concluded that with a good strategy and treatment plan; appropriate and regular use of these robotic rehabilitation and assistive devices do lead to improvements in current conditions of most of the subjects and prolonged use may lead to motor recovery.Implications for RehabilitationStroke, accidents, spinal cord injuries and other neuromuscular disorders lead to impairments. Upper limb impairments have a tremendous adverse affect on ADL and reduces quality of life drastically.Advancement in technology has led to the designing of many robotic assistive and rehabilitation devices to assist in motor recovery or aid in ADL.This review analyses different available devices for rehabilitation and assistance and points out that use of these devices in time does help in motor recovery. Most of the studies reviewed showed improvements for the user.Future devices should be more portable and easier to use from home.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Traumatismos da Medula Espinal , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Atividades Cotidianas , Qualidade de Vida , Extremidade Superior , Traumatismos da Medula Espinal/reabilitação , Recuperação de Função Fisiológica
10.
Front Comput Neurosci ; 17: 1038636, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814932

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder that causes memory degradation and cognitive function impairment in elderly people. The irreversible and devastating cognitive decline brings large burdens on patients and society. So far, there is no effective treatment that can cure AD, but the process of early-stage AD can slow down. Early and accurate detection is critical for treatment. In recent years, deep-learning-based approaches have achieved great success in Alzheimer's disease diagnosis. The main objective of this paper is to review some popular conventional machine learning methods used for the classification and prediction of AD using Magnetic Resonance Imaging (MRI). The methods reviewed in this paper include support vector machine (SVM), random forest (RF), convolutional neural network (CNN), autoencoder, deep learning, and transformer. This paper also reviews pervasively used feature extractors and different types of input forms of convolutional neural network. At last, this review discusses challenges such as class imbalance and data leakage. It also discusses the trade-offs and suggestions about pre-processing techniques, deep learning, conventional machine learning methods, new techniques, and input type selection.

11.
Expert Rev Med Devices ; 18(1): 31-46, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33249938

RESUMO

INTRODUCTION: Foot Drop (FD) is a condition, which is very commonly found in post-stoke patients; however it can also be seen in patients with multiple sclerosis, and cerebral palsy. It is a sign of neuromuscular damage caused by the weakness of the muscles. There are various approaches of FD's rehabilitation, such as physiotherapy, surgery, and the use of technological devices. Recently, researchers have worked on developing various technologies to enhance assisting and rehabilitation of FD. AREAS COVERED: This review analyzes different types of technologies available for FD. This include devices that are available commercially or still under research. 101 studies published between 2015 and 2020 were identified for the review, many were excluded due to various reasons, e.g., were not robot-based devices, did not include FD as one of the targeted diseases, or was insufficient information. 24 studies that met our inclusion criteria were assessed. These studies were further classified into two different categories: robot-based ankle-foot orthosis (RAFO) and Functional Electrical Stimulation (FES) devices. EXPERT OPINION: Studies included showed that both RAFO and FES showed considerable improvement in the gait cycle of the patients. Future trends are inclining towards integrating FES with other neuro-concepts such as muscle-synergies for further developments.


Assuntos
Neuropatias Fibulares/reabilitação , Reabilitação do Acidente Vascular Cerebral/tendências , Tornozelo/fisiopatologia , Terapia por Estimulação Elétrica/instrumentação , Pé/fisiopatologia , Humanos , Aparelhos Ortopédicos
12.
Neural Comput Appl ; : 1-9, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34658535

RESUMO

COVID-19 as a global pandemic has had an unprecedented impact on the entire world. Projecting the future spread of the virus in relation to its characteristics for a specific suite of countries against a temporal trend can provide public health guidance to governments and organizations. Therefore, this paper presented an epidemiological comparison of the traditional SEIR model with an extended and modified version of the same model by splitting the infected compartment into asymptomatic mild and symptomatic severe. We then exposed our derived layered model into two distinct case studies with variations in mitigation strategies and non-pharmaceutical interventions (NPIs) as a matter of benchmarking and comparison. We focused on exploring the United Arab Emirates (a small yet urban centre (where clear sequential stages NPIs were implemented). Further, we concentrated on extending the models by utilizing the effective reproductive number (R t) estimated against time, a more realistic than the static R 0, to assess the potential impact of NPIs within each case study. Compared to the traditional SEIR model, the results supported the modified model as being more sensitive in terms of peaks of simulated cases and flattening determinations.

13.
Ultrason Sonochem ; 62: 104863, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31806550

RESUMO

In the present work, we report the fabrication of stable composite of chitosan hydrogels (CHI) on multiwalled carbon nanotubes (MWCNT) using a simple ultrasonic-assisted method. Also, rod-like hydroxyapatite nanoparticles (HA NPs) were synthesised using a hydrothermal route and were incorporated into the highly conductive MWCNT-CHI scaffolds using an ultrasonication method. The functionalization of MWCNT and preparation of HA NPs on MWCNT-CHI nanocomposite were done using the sonication over the frequency of 37 kHz with the ultrasonic power capable of 150 W (Elmasonic Easy 60H bath sonicator). The resulting hybrid HA NPs/MWCNT-CHI nanocomposites have an excellent surface area and high surface to volume ratio, which leads to the sensitive detection of nitrofurantoin than pristine MWCNT and HA NPs. The complete elemental and morphological analyses of the HA NPs/MWCNT-CHI nanocomposites were characterised by XRD, FTIR, RAMAN, FESEM, TEM, EDX, and elemental mapping techniques. Electrochemical analysis of the HA NPs/MWCNT-CHI nanocomposites was carried out by cyclic voltammetry, electrochemical impedance spectroscopy and amperometry methods. The modified glassy carbon electrode (GCE) of HA NPs/MWCNT-CHI nanocomposites exhibit the nitrofurantoin detection activity at the linear range of 0.005-982.1 µM with the detection limit of 1.3 nM. The synergistic electrocatalytic activity of HA NPs/MWCNT-CHI nanocomposites modified GCE is correlated to the sensitivity of 0.16 µAµM-1 cm-2 with excellent precision and accuracy towards the sensing of nitrofurantoin.

14.
Materials (Basel) ; 13(18)2020 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-32933194

RESUMO

Current environmental concerns have led to a search of more environmentally friendly manufacturing methods; thus, natural fibers have gained attention in the 3D printing industry to be used as bio-filters along with thermoplastics. The utilization of natural fibers is very convenient as they are easily available, cost-effective, eco-friendly, and biodegradable. Using natural fibers rather than synthetic fibers in the production of the 3D printing filaments will reduce gas emissions associated with the production of the synthetic fibers that would add to the current pollution problem. As a matter of fact, natural fibers have a reinforcing effect on plastics. This review analyzes how the properties of the different polymers vary when natural fibers processed to produce filaments for 3D Printing are added. The results of using natural fibers for 3D Printing are presented in this study and appeared to be satisfactory, while a few studies have reported some issues.

15.
IEEE J Biomed Health Inform ; 23(2): 693-702, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29994012

RESUMO

Elderly population (over the age of 60) is predicted to be 1.2 billion by 2025. Most of the elderly people would like to stay alone in their own house due to the high eldercare cost and privacy invasion. Unobtrusive activity recognition is the most preferred solution for monitoring daily activities of the elderly people living alone rather than the camera and wearable devices based systems. Thus, we propose an unobtrusive activity recognition classifier using deep convolutional neural network (DCNN) and anonymous binary sensors that are passive infrared motion sensors and door sensors. We employed Aruba annotated open data set that was acquired from a smart home where a voluntary single elderly woman was living inside for eight months. First, ten basic daily activities, namely, Eating, Bed_to_Toilet, Relax, Meal_Preparation, Sleeping, Work, Housekeeping, Wash_Dishes, Enter_Home, and Leave_Home are segmented with different sliding window sizes, and then converted into binary activity images. Next, the activity images are employed as the ground truth for the proposed DCNN model. The 10-fold cross-validation evaluation results indicated that our proposed DCNN model outperforms the existing models with F1-score of 0.79 and 0.951 for all ten activities and eight activities (excluding Leave_Home and Wash_Dishes), respectively.


Assuntos
Aprendizado Profundo , Serviços de Saúde para Idosos , Atividades Humanas/classificação , Processamento de Imagem Assistida por Computador/métodos , Vida Independente , Idoso , Humanos , Gravação em Vídeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA