RESUMO
Regulation of gene expression is a critical link between genotype and phenotype explaining substantial heritable variation within species. However, we are only beginning to understand the ways that specific gene regulatory mechanisms contribute to adaptive divergence of populations. In plants, the post-transcriptional regulatory mechanism of alternative splicing (AS) plays an important role in both development and abiotic stress response, making it a compelling potential target of natural selection. AS allows organisms to generate multiple different transcripts/proteins from a single gene and thus may provide a source of evolutionary novelty. Here, we examine whether variation in alternative splicing and gene expression levels might contribute to adaptation and incipient speciation of dune-adapted prairie sunflowers in Great Sand Dunes National Park, Colorado, USA. We conducted a common garden experiment to assess transcriptomic variation among ecotypes and analyzed differential expression, differential splicing, and gene coexpression. We show that individual genes are strongly differentiated for both transcript level and alternative isoform proportions, even when grown in a common environment, and that gene coexpression networks are disrupted between ecotypes. Furthermore, we examined how genome-wide patterns of sequence divergence correspond to divergence in transcript levels and isoform proportions and find evidence for both cis and trans-regulation. Together, our results emphasize that alternative splicing has been an underappreciated mechanism providing source material for natural selection at short evolutionary time scales.
Assuntos
Processamento Alternativo , Ecótipo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Perfilação da Expressão Gênica , TranscriptomaRESUMO
Conspecific populations living in adjacent but contrasting microenvironments represent excellent systems for studying natural selection. These systems are valuable because gene flow is expected to force genetic homogeneity except at loci experiencing divergent selection. A history of reciprocal transplant and common garden studies in such systems, and a growing number of genomic studies, have contributed to understanding how selection operates in natural populations. While selection can vary across different fitness components and life stages, few studies have investigated how this ultimately affects allele frequencies and the maintenance of divergence between populations. Here, we study two sunflower ecotypes in distinct, adjacent habitats by combining demographic models with genome-wide sequence data to estimate fitness and allele frequency change at multiple life stages. This framework allows us to estimate that only local ecotypes are likely to experience positive population growth (λ > 1) and that the maintenance of divergent adaptation appears to be mediated via habitat- and life stage-specific selection. We identify genetic variation, significantly driven by loci in chromosomal inversions, associated with different life history strategies in neighbouring ecotypes that optimize different fitness components and may contribute to the maintenance of distinct ecotypes.
RESUMO
Targeted genome editing via engineered nucleases is an exciting area of biomedical research and holds potential for clinical applications. Despite rapid advances in the field, in vivo targeted transgene integration is still infeasible because current tools are inefficient, especially for non-dividing cells, which compose most adult tissues. This poses a barrier for uncovering fundamental biological principles and developing treatments for a broad range of genetic disorders. Based on clustered regularly interspaced short palindromic repeat/Cas9 (CRISPR/Cas9) technology, here we devise a homology-independent targeted integration (HITI) strategy, which allows for robust DNA knock-in in both dividing and non-dividing cells in vitro and, more importantly, in vivo (for example, in neurons of postnatal mammals). As a proof of concept of its therapeutic potential, we demonstrate the efficacy of HITI in improving visual function using a rat model of the retinal degeneration condition retinitis pigmentosa. The HITI method presented here establishes new avenues for basic research and targeted gene therapies.
Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Marcação de Genes/métodos , Genoma/genética , Retinose Pigmentar/genética , Retinose Pigmentar/terapia , Animais , Divisão Celular , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Terapia Genética/métodos , Neurônios/citologia , Neurônios/metabolismo , Ratos , Homologia de SequênciaRESUMO
Nuclear-architecture defects have been shown to correlate with the manifestation of a number of human diseases as well as ageing. It is therefore plausible that diseases whose manifestations correlate with ageing might be connected to the appearance of nuclear aberrations over time. We decided to evaluate nuclear organization in the context of ageing-associated disorders by focusing on a leucine-rich repeat kinase 2 (LRRK2) dominant mutation (G2019S; glycine-to-serine substitution at amino acid 2019), which is associated with familial and sporadic Parkinson's disease as well as impairment of adult neurogenesis in mice. Here we report on the generation of induced pluripotent stem cells (iPSCs) derived from Parkinson's disease patients and the implications of LRRK2(G2019S) mutation in human neural-stem-cell (NSC) populations. Mutant NSCs showed increased susceptibility to proteasomal stress as well as passage-dependent deficiencies in nuclear-envelope organization, clonal expansion and neuronal differentiation. Disease phenotypes were rescued by targeted correction of the LRRK2(G2019S) mutation with its wild-type counterpart in Parkinson's disease iPSCs and were recapitulated after targeted knock-in of the LRRK2(G2019S) mutation in human embryonic stem cells. Analysis of human brain tissue showed nuclear-envelope impairment in clinically diagnosed Parkinson's disease patients. Together, our results identify the nucleus as a previously unknown cellular organelle in Parkinson's disease pathology and may help to open new avenues for Parkinson's disease diagnoses as well as for the potential development of therapeutics targeting this fundamental cell structure.
Assuntos
Proteínas Mutantes/metabolismo , Células-Tronco Neurais/patologia , Doença de Parkinson/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Apoptose , Diferenciação Celular , Divisão Celular , Linhagem Celular , Células Clonais/metabolismo , Células Clonais/patologia , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/patologia , Técnicas de Introdução de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Proteínas Mutantes/genética , Mutação , Células-Tronco Neurais/metabolismo , Membrana Nuclear/genética , Membrana Nuclear/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Estresse FisiológicoRESUMO
Hirundo is the most species-rich genus of the passerine swallow family (Hirundinidae) and has a cosmopolitan distribution. Here we report the complete, annotated mitochondrial genomes for 25 individuals from 10 of the 14 extant Hirundo species; these include representatives from four subspecies of the barn swallow, H. rustica. Mitogenomes were conserved in size, ranging from 18,500 to 18,700 base pairs. They all contained 13 protein-coding regions, 22 tRNAs, a control region, and large and small ribosomal subunits. Phylogenetic analysis resolved most of the relationships between the studied species and subspecies which were largely consistent with previously published trees. Several new relationships were observed within the phylogeny that could have only been discovered with the increased amount of genetic material. This study represents the largest Hirundo mitochondrial phylogeny to date, and could serve as a vital tool for other studies focusing on the evolution of the Hirundo genus.
RESUMO
Werner syndrome (WS) is a premature aging disorder caused by WRN protein deficiency. Here, we report on the generation of a human WS model in human embryonic stem cells (ESCs). Differentiation of WRN-null ESCs to mesenchymal stem cells (MSCs) recapitulates features of premature cellular aging, a global loss of H3K9me3, and changes in heterochromatin architecture. We show that WRN associates with heterochromatin proteins SUV39H1 and HP1α and nuclear lamina-heterochromatin anchoring protein LAP2ß. Targeted knock-in of catalytically inactive SUV39H1 in wild-type MSCs recapitulates accelerated cellular senescence, resembling WRN-deficient MSCs. Moreover, decrease in WRN and heterochromatin marks are detected in MSCs from older individuals. Our observations uncover a role for WRN in maintaining heterochromatin stability and highlight heterochromatin disorganization as a potential determinant of human aging.
Assuntos
Envelhecimento/metabolismo , Senescência Celular , Exodesoxirribonucleases/metabolismo , Heterocromatina/metabolismo , Células-Tronco Mesenquimais/metabolismo , RecQ Helicases/metabolismo , Síndrome de Werner/metabolismo , Envelhecimento/genética , Animais , Diferenciação Celular , Centrômero/metabolismo , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Exodesoxirribonucleases/genética , Técnicas de Inativação de Genes , Células HEK293 , Heterocromatina/química , Humanos , Proteínas de Membrana/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Modelos Biológicos , RecQ Helicases/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Síndrome de Werner/genética , Helicase da Síndrome de WernerRESUMO
The utility of genome editing technologies for disease modeling and developing cellular therapies has been extensively documented, but the impact of these technologies on mutational load at the whole-genome level remains unclear. We performed whole-genome sequencing to evaluate the mutational load at single-base resolution in individual gene-corrected human induced pluripotent stem cell (hiPSC) clones in three different disease models. In single-cell clones, gene correction by helper-dependent adenoviral vector (HDAdV) or Transcription Activator-Like Effector Nuclease (TALEN) exhibited few off-target effects and a low level of sequence variation, comparable to that accumulated in routine hiPSC culture. The sequence variants were randomly distributed and unique to individual clones. We also combined both technologies and developed a TALEN-HDAdV hybrid vector, which significantly increased gene-correction efficiency in hiPSCs. Therefore, with careful monitoring via whole-genome sequencing it is possible to apply genome editing to human pluripotent cells with minimal impact on genomic mutational load.
Assuntos
Adenoviridae/genética , Endonucleases/metabolismo , Terapia Genética , Vetores Genéticos/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Sistemas CRISPR-Cas/genética , Células Clonais , Reparo do DNA/genética , Endonucleases/genética , Vetores Genéticos/genética , Genoma/genética , Células HEK293 , Humanos , Mutação/genética , Medicina Regenerativa , Análise de Sequência de DNARESUMO
Fanconi anaemia (FA) is a recessive disorder characterized by genomic instability, congenital abnormalities, cancer predisposition and bone marrow (BM) failure. However, the pathogenesis of FA is not fully understood partly due to the limitations of current disease models. Here, we derive integration free-induced pluripotent stem cells (iPSCs) from an FA patient without genetic complementation and report in situ gene correction in FA-iPSCs as well as the generation of isogenic FANCA-deficient human embryonic stem cell (ESC) lines. FA cellular phenotypes are recapitulated in iPSCs/ESCs and their adult stem/progenitor cell derivatives. By using isogenic pathogenic mutation-free controls as well as cellular and genomic tools, our model serves to facilitate the discovery of novel disease features. We validate our model as a drug-screening platform by identifying several compounds that improve hematopoietic differentiation of FA-iPSCs. These compounds are also able to rescue the hematopoietic phenotype of FA patient BM cells.
Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Anemia de Fanconi/etiologia , Anemia de Fanconi/patologia , Modelos Biológicos , Células-Tronco/patologia , Diferenciação Celular , Epigênese Genética , Anemia de Fanconi/tratamento farmacológico , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Adulto JovemRESUMO
Gaucher disease is an autosomal recessive disorder resulting from deficient activity of the lysosomal enzyme glucocerebrosidase (GBA, E.C.3.2.1.45). Three clinical forms of Gaucher disease have been described: type 1, nonneuronopathic; type 2, acute neuronopathic; and type 3, subacute neuronopathic (OMIM 230800, 230900, 231000). Over the past decade, recognition of a distinct, perinatal lethal form of Gaucher disease (PLGD) has led researchers and clinicians to evaluate Gaucher disease in the differential diagnosis of congenital ichthyosis and nonimmune hydrops fetalis. To date, more than 30 cases of PLGD have been genotyped and reported. It has been observed that homozygosity for recombinant GBA alleles, which are fundamentally null alleles, leads to early lethality, usually in utero or during the 1st few days of life, whereas genotypes involving a recombinant allele and a missense mutation may be less detrimental. Here, we report a case of Gaucher disease with prenatal onset and death within hours of birth, likely due to compound heterozygosity for the GBA Rec Nci I null allele and a R131C missense mutation. In view of the patient's severe clinical course, and based on reviews of other PLGD cases, we postulate that a missense mutation that abruptly disrupts the structure/function of GBA, in combination with a null allele, may result in early lethality in patients with PLGD. We also speculate that R131C is an extremely severe mutation that has occurred more than once in different populations and, in either the homozygous form or heterozygous with another severe mutation, will result in a poor prognosis.
Assuntos
Doença de Gaucher/genética , Glucosilceramidase/genética , Mutação de Sentido Incorreto , Sequência de Bases , Evolução Fatal , Doença de Gaucher/patologia , Heterozigoto , Humanos , Recém-Nascido , Masculino , Dados de Sequência Molecular , Linhagem , Polimorfismo de Fragmento de Restrição , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
Combination of stem cell-based approaches with gene-editing technologies represents an attractive strategy for studying human disease and developing therapies. However, gene-editing methodologies described to date for human cells suffer from technical limitations including limited target gene size, low targeting efficiency at transcriptionally inactive loci, and off-target genetic effects that could hamper broad clinical application. To address these limitations, and as a proof of principle, we focused on homologous recombination-based gene correction of multiple mutations on lamin A (LMNA), which are associated with various degenerative diseases. We show that helper-dependent adenoviral vectors (HDAdVs) provide a highly efficient and safe method for correcting mutations in large genomic regions in human induced pluripotent stem cells and can also be effective in adult human mesenchymal stem cells. This type of approach could be used to generate genotype-matched cell lines for disease modeling and drug discovery and potentially also in therapeutics.