Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 26(8): 085704, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25649468

RESUMO

Pt deposited by focused ion beam (FIB) is a common material used for attachment of nanosamples, repair of integrated circuits, and synthesis of nanostructures. Despite its common use little information is available on its thermal properties. In this work, Pt deposited by FIB is characterized thermally, structurally, and chemically. Its thermal conductivity is found to be substantially lower than the bulk value of Pt, 7.2 W m(-1) K(-1) versus 71.6 W m(-1) K(-1) at room temperature. The low thermal conductivity is attributed to the nanostructure of the material and its chemical composition. Pt deposited by FIB is shown, via aberration corrected TEM, to be a segregated mix of nanocrystalline Pt and amorphous C with Ga and O impurities. Ga impurities mainly reside in the Pt while O is homogeneously distributed throughout. The Ga impurity, small grain size of the Pt, and the amorphous carbon between grains are the cause for the low thermal conductivity of this material. Since Pt deposited by FIB is a common material for affixing samples, this information can be used to assess systematic errors in thermal characterization of different nanosamples. This application is also demonstrated by thermal characterization of two carbon nanofibers and a correction using the reported thermal properties of the Pt deposited by FIB.

2.
Nat Commun ; 6: 7228, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26105560

RESUMO

Large reductions in the thermal conductivity of thin silicon membranes have been demonstrated in various porous structures. However, the role of coherent boundary scattering in such structures has become a matter of some debate. Here we report on the first experimental observation of coherent phonon boundary scattering at room temperature in 2D phononic crystals formed by the introduction of air holes in a silicon matrix with minimum feature sizes >100 nm. To delaminate incoherent from coherent boundary scattering, phononic crystals with a fixed minimum feature size, differing only in unit cell geometry, were fabricated. A suspended island technique was used to measure the thermal conductivity. We introduce a hybrid thermal conductivity model that accounts for partially coherent and partially incoherent phonon boundary scattering. We observe excellent agreement between this model and experimental data, and the results suggest that significant room temperature coherent phonon boundary scattering occurs.

3.
Rev Sci Instrum ; 84(10): 105003, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24182154

RESUMO

A technique based on suspended islands is described to measure the in-plane thermal conductivity of thin films and nano-structured materials, and is also employed for measurements of several samples with a single measurement platform. Using systematic steps for measurements, the characterization of the thermal resistances of a sample and its contacts are studied. The calibration of the contacts in this method is independent of the geometry, size, materials, and uniformity of contacts. To verify the technique, two different Si samples with different thicknesses and two samples of the same SiN(x) wafer are characterized on a single device. One of the Si samples is also characterized by another technique, which verifies the current results. Characterization of the two SiN(x) samples taken from the same wafer showed less than 1% difference in the measured thermal conductivities, indicating the precision of the method. Additionally, one of the SiN(x) samples is characterized and then demounted, remounted, and characterized for a second time. The comparison showed the change in the thermal resistance of the contact in multiple measurements could be as small as 0.2 K/µW, if a similar sample is used.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA