Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cereb Cortex ; 26(4): 1684-1697, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25631057

RESUMO

When a subject faces conflicting situations, decision-making becomes uncertain. The human dorsal anterior cingulate cortex (dACC) has been repeatedly implicated in the monitoring of such situations, and its neural activity is thought to be involved in behavioral adjustment. However, this hypothesis is mainly based on neuroimaging results and is challenged by animal studies that failed to report any neuronal correlates of conflict monitoring. This discrepancy is thought be due either to methodological or more fundamental cross-species differences. In this study, we eliminated methodological biases and recorded single-neuron activity in monkeys performing a Stroop-like task. We found specific changes in dACC activity during incongruent trials but only in a small subpopulation of cells. Critically, these changes were not related to reaction time and were absent before any incorrect action was taken. A larger fraction of neurons exhibited sustained activity during the whole decision period, whereas another subpopulation of neurons was modulated by reaction time, with a gradual increase in their firing rate that peaked at movement onset. Most of the neurons found in these subpopulations exhibited activity after the delivery of an external negative feedback stimulus that indicated an error had been made. These findings, which are consistent with an executive control role, reconcile various theories of prefrontal cortex function and support the homology between human and monkey cognitive architectures.


Assuntos
Conflito Psicológico , Tomada de Decisões/fisiologia , Função Executiva/fisiologia , Giro do Cíngulo/fisiologia , Neurônios/fisiologia , Potenciais de Ação , Adulto , Animais , Feminino , Humanos , Macaca mulatta , Tempo de Reação , Teste de Stroop , Adulto Jovem
2.
Mov Disord ; 31(8): 1146-54, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26900137

RESUMO

BACKGROUND: There is an apparent contradiction between experimental data showing that the basal ganglia are involved in goal-oriented and routine behaviors and clinical observations. Lesion or disruption by deep brain stimulation of the globus pallidus interna has been used for various therapeutic purposes ranging from the improvement of dystonia to the treatment of Tourette's syndrome. None of these approaches has reported any severe impairment in goal-oriented or automatic movement. METHOD: To solve this conundrum, we trained 2 monkeys to perform a variant of a 2-armed bandit-task (with different reward contingencies). In the latter we alternated blocks of trials with choices between familiar rewarded targets that elicit routine behavior and blocks with novel pairs of targets that require an intentional learning process. RESULTS: Bilateral inactivation of the globus pallidus interna, by injection of muscimol, prevents animals from learning new contingencies while performance remains intact, although slower for the familiar stimuli. We replicate in silico these data by adding lateral competition and Hebbian learning in the cortical layer of the theoretical model of the cortex-basal ganglia loop that provided the framework of our experimental approach. CONCLUSION: The basal ganglia play a critical role in the deliberative process that underlies learning but are not necessary for the expression of routine movements. Our approach predicts that after pallidotomy or during stimulation, patients should have difficulty with complex decision-making processes or learning new goal-oriented behaviors. © 2016 Movement Disorder Society.


Assuntos
Comportamento Animal/fisiologia , Globo Pálido/fisiologia , Objetivos , Aprendizagem/fisiologia , Atividade Motora/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Feminino , Agonistas de Receptores de GABA-A/farmacologia , Globo Pálido/efeitos dos fármacos , Aprendizagem/efeitos dos fármacos , Macaca mulatta , Modelos Teóricos , Atividade Motora/efeitos dos fármacos , Muscimol/farmacologia , Recompensa
3.
Brain ; 136(Pt 1): 304-17, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23365104

RESUMO

Doubt, and its behavioural correlate, checking, is a normal phenomenon of human cognition that is dramatically exacerbated in obsessive-compulsive disorder. We recently showed that deep brain stimulation in the associative-limbic area of the subthalamic nucleus, a central core of the basal ganglia, improved obsessive-compulsive disorder. To understand the physiological bases of symptoms in such patients, we recorded the activity of individual neurons in the therapeutic target during surgery while subjects performed a cognitive task that gave them the possibility of unrestricted repetitive checking after they had made a choice. We postulated that the activity of neurons in this region could be influenced by doubt and checking behaviour. Among the 63/87 task-related neurons recorded in 10 patients, 60% responded to various combinations of instructions, delay, movement or feedback, thus highlighting their role in the integration of different types of information. In addition, task-related activity directed towards decision-making increased during trials with checking in comparison with those without checking. These results suggest that the associative-limbic subthalamic nucleus plays a role in doubt-related repetitive thoughts. Overall, our results not only provide new insight into the role of the subthalamic nucleus in human cognition but also support the fact that subthalamic nucleus modulation by deep brain stimulation reduced compulsive behaviour in patients with obsessive-compulsive disorder.


Assuntos
Comportamento Compulsivo/fisiopatologia , Neurônios/fisiologia , Transtorno Obsessivo-Compulsivo/fisiopatologia , Núcleo Subtalâmico/fisiopatologia , Adulto , Comportamento Compulsivo/psicologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtorno Obsessivo-Compulsivo/psicologia
4.
Nat Med ; 29(11): 2854-2865, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37932548

RESUMO

People with late-stage Parkinson's disease (PD) often suffer from debilitating locomotor deficits that are resistant to currently available therapies. To alleviate these deficits, we developed a neuroprosthesis operating in closed loop that targets the dorsal root entry zones innervating lumbosacral segments to reproduce the natural spatiotemporal activation of the lumbosacral spinal cord during walking. We first developed this neuroprosthesis in a non-human primate model that replicates locomotor deficits due to PD. This neuroprosthesis not only alleviated locomotor deficits but also restored skilled walking in this model. We then implanted the neuroprosthesis in a 62-year-old male with a 30-year history of PD who presented with severe gait impairments and frequent falls that were medically refractory to currently available therapies. We found that the neuroprosthesis interacted synergistically with deep brain stimulation of the subthalamic nucleus and dopaminergic replacement therapies to alleviate asymmetry and promote longer steps, improve balance and reduce freezing of gait. This neuroprosthesis opens new perspectives to reduce the severity of locomotor deficits in people with PD.


Assuntos
Estimulação Encefálica Profunda , Transtornos Neurológicos da Marcha , Doença de Parkinson , Masculino , Animais , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/terapia , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/terapia , Marcha/fisiologia , Medula Espinal
5.
J Physiol ; 590(22): 5861-75, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22890706

RESUMO

The pattern of activity of globus pallidus (GP) neurons is tightly regulated by GABAergic inhibition. In addition to extrinsic inputs from the striatum (STR-GP) the other source of GABA to GP neurons arises from intrinsic intranuclear axon collaterals (GP-GP). While the contribution of striatal inputs has been studied, notably its hyperactivity in Parkinson's disease (PD), the properties and function of intranuclear inhibition remain poorly understood. Our objective was therefore to test the impact of chronic dopamine depletion on pallido-pallidal transmission. Using patch-clamp whole-cell recordings in rat brain slices, we combined electrical and optogenetic stimulations with pharmacology to differentiate basic synaptic properties of STR-GP and GP-GP GABAergic synapses. GP-GP synapses were characterized by activity-dependent depression and insensitivity to the D(2) receptor specific agonist quinpirole and STR-GP synapses by frequency-dependent facilitation and quinpirole modulation. Chronic dopamine deprivation obtained in 6-OHDA lesioned animals boosted the amplitude of GP-GP IPSCs but did not modify STR-GP transmission and increased the amplitude of miniature IPSCs. Replacement of calcium by strontium confirmed that the quantal amplitude was increased at GP-GP synapses. Finally, we demonstrated that boosted GP-GP transmission promotes resetting of autonomous activity and rebound-burst firing after dopamine depletion. These results suggest that GP-GP synaptic transmission (but not STR-GP) is augmented by chronic dopamine depletion which could contribute to the aberrant GP neuronal activity observed in PD.


Assuntos
Neurônios GABAérgicos/fisiologia , Globo Pálido/fisiopatologia , Potenciais Pós-Sinápticos Inibidores , Potenciais Pós-Sinápticos em Miniatura , Transtornos Parkinsonianos/fisiopatologia , Animais , Cálcio/metabolismo , Modelos Animais de Doenças , Dopamina/deficiência , Agonistas de Dopamina/farmacologia , Optogenética , Quimpirol/farmacologia , Ratos , Ratos Sprague-Dawley , Estrôncio/farmacologia
6.
Front Hum Neurosci ; 15: 736732, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35058762

RESUMO

Deciding between different voluntary movements implies a continuous control of the competition between potential actions. Many theories postulate a leading role of prefrontal cortices in this executive function, but strong evidence exists that a motor region like the primary motor cortex (M1) is also involved, possibly via inhibitory mechanisms. This was already shown during the pre-movement decision period, but not after movement onset. For this pilot experiment we designed a new task compatible with the dynamics of post-onset control to study the silent period (SP) duration, a pause in electromyographic activity after single-pulse transcranial magnetic stimulation that reflects inhibitory mechanisms. A careful analysis of the SP during the ongoing movement indicates a gradual increase in inhibitory mechanisms with the level of competition, consistent with an increase in mutual inhibition between alternative movement options. However, we also observed a decreased SP duration for high-competition trials associated with change-of-mind inflections in their trajectories. Our results suggest a new post-onset adaptive process that consists in a transient reduction of GABAergic inhibition within M1 for highly conflicting situations. We propose that this reduced inhibition softens the competition between concurrent motor options, thereby favoring response vacillation, an adaptive strategy that proved successful at improving behavioral performance.

7.
J Neurosci ; 27(5): 1176-83, 2007 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-17267573

RESUMO

The striatum is a key neural interface for cognitive and motor information processing in which associations between reward value and visual stimulus can be used to modify motor commands. It can guide action-selection processes that occur farther downstream in the basal ganglia (BG) circuit, by encoding the reward value of an action. Here, we report on the study of simultaneously recorded neurons in the dorsal striatum (input stage of the BG) and the internal pallidum (output stage of the BG) in two monkeys performing a center-out motor task in which the visual targets were associated with different reward probabilities. We show that the tuning curves of motor-related neurons in both structures are modulated by the value of the action before movement initiation and during its execution. The representations of values associated with different actions change dynamically during the task in the internal globus pallidus, with a significant increase in the number of encoding neurons for the chosen target at the onset of movement. This report sheds additional light on the functional differences between the input and output structures of the BG and supports the assertion that the dorsal basal ganglia are involved in movement-related decision-making processes based on incentive values.


Assuntos
Gânglios da Base/fisiologia , Motivação , Desempenho Psicomotor/fisiologia , Recompensa , Animais , Comportamento de Escolha/fisiologia , Feminino , Macaca mulatta , Córtex Motor/fisiologia , Estimulação Luminosa/métodos
8.
Sci Rep ; 7: 45267, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28349919

RESUMO

When facing doubt, humans can go back over a performed action in order to optimize subsequent performance. The present study aimed to establish and characterize physiological doubt and checking behavior in non-human primates (NHP). We trained two rhesus monkeys (Macaca mulatta) in a newly designed "Check-or-Go" task that allows the animal to repeatedly check and change the availability of a reward before making the final decision towards obtaining that reward. By manipulating the ambiguity of a visual cue in which the reward status is embedded, we successfully modulated animal certainty and created doubt that led the animals to check. This voluntary checking behavior was further characterized by making EEG recordings and measuring correlated changes in salivary cortisol. Our data show that monkeys have the metacognitive ability to express voluntary checking behavior similar to that observed in humans, which depends on uncertainty monitoring, relates to anxiety and involves brain frontal areas.


Assuntos
Ansiedade , Comportamento Animal , Lobo Frontal/fisiologia , Macaca mulatta/psicologia , Animais , Tomada de Decisões , Eletrodos Implantados , Eletroencefalografia , Potenciais Evocados , Hidrocortisona/metabolismo , Masculino , Saliva/metabolismo
9.
PLoS One ; 9(5): e96275, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24831130

RESUMO

The neurological bases of spatial navigation are mainly investigated in rodents and seldom in primates. The few studies led on spatial navigation in both human and non-human primates are performed in virtual, not in real environments. This is mostly because of methodological difficulties inherent in conducting research on freely-moving monkeys in real world environments. There is some incertitude, however, regarding the extrapolation of rodent spatial navigation strategies to primates. Here we present an entirely new platform for investigating real spatial navigation in rhesus monkeys. We showed that monkeys can learn a pathway by using different strategies. In these experiments three monkeys learned to drive the wheelchair and to follow a specified route through a real maze. After learning the route, probe tests revealed that animals successively use three distinct navigation strategies based on i) the place of the reward, ii) the direction taken to obtain reward or iii) a cue indicating reward location. The strategy used depended of the options proposed and the duration of learning. This study reveals that monkeys, like rodents and humans, switch between different spatial navigation strategies with extended practice, implying well-conserved brain learning systems across different species. This new task with freely driving monkeys provides a good support for the electrophysiological and pharmacological investigation of spatial navigation in the real world by making possible electrophysiological and pharmacological investigations.


Assuntos
Aprendizagem em Labirinto/fisiologia , Navegação Espacial , Cadeiras de Rodas , Animais , Comportamento Animal , Comportamento de Escolha , Sinais (Psicologia) , Feminino , Macaca mulatta , Memória/fisiologia , Percepção Espacial/fisiologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-20300468

RESUMO

Although it is known that noradrenaline (NA) powerfully controls spinal motor networks, few data are available regarding the noradrenergic (NAergic) modulation of intrinsic and synaptic properties of neurons in motor networks. Our work explores the cellular basis of NAergic modulation in the rat motor spinal cord. We first show that lumbar motoneurons express the three classes of adrenergic receptors at birth. Using patch-clamp recordings in the newborn rat spinal cord preparation, we characterized the effects of NA and of specific agonists of the three classes of adrenoreceptors on motoneuron membrane properties. NA increases the motoneuron excitability partly via the inhibition of a K(IR) like current. Methoxamine (alpha(1)), clonidine (alpha(2)) and isoproterenol (beta) differentially modulate the motoneuron membrane potential but also increase motoneuron excitability, these effects being respectively inhibited by the antagonists prazosin (alpha(1)), yohimbine (alpha(2)) and propranolol (beta). We show that the glutamatergic synaptic drive arising from the T13-L2 network is enhanced in motoneurons by NA, methoxamine and isoproterenol. On the other hand, NA, isoproterenol and clonidine inhibit both the frequency and amplitude of miniature glutamatergic EPSCs while methoxamine increases their frequency. The T13-L2 synaptic drive is thereby differentially modulated from the other glutamatergic synapses converging onto motoneurons and enhanced by presynaptic alpha(1) and beta receptor activation. Our data thus show that the NAergic system exerts a powerful and complex neuromodulation of lumbar motor networks in the neonatal rat spinal cord.

11.
PLoS One ; 4(7): e6240, 2009 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-19609433

RESUMO

Learning from mistakes is a key feature of human behavior. However, the mechanisms underlying short-term adaptation to erroneous action are still poorly understood. One possibility relies on the modulation of attentional systems after an error. To explore this possibility, we have designed a Stroop-like visuo-motor task in monkeys that favors incorrect action. Using this task, we previously found that single neurons recorded from the anterior cingulate cortex (ACC) were closely tuned to behavioral performance and, more particularly, that the activity of most neurons was biased towards the evaluation of erroneous action. Here we describe single neurons engaged in both error detection and response alertness processing, whose activation is closely associated with the improvement of subsequent behavioral performance. Specifically, we show that the effect of a warning stimulus on neuronal firing is enhanced after an erroneous response rather than a successful one and that this outcome is correlated with an error rate decrease. Our results suggest that the anterior cingulate cortex, which exhibits this activity, serves as a powerful computational locus for rapid behavioral adaptation.


Assuntos
Adaptação Psicológica , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Humanos , Córtex Pré-Frontal/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA