RESUMO
Interatomic or intermolecular Coulombic decay (ICD) is a nonlocal electronic decay mechanism occurring in weakly bound matter. In an ICD process, energy released by electronic relaxation of an excited atom or molecule leads to ionization of a neighboring one via Coulombic electron interactions. ICD has been predicted theoretically in the mid nineties of the last century, and its existence has been confirmed experimentally approximately ten years later. Since then, a number of fundamental and applied aspects have been studied in this quickly growing field of research. This review provides an introduction to ICD and draws the connection to related energy transfer and ionization processes. The theoretical approaches for the description of ICD as well as the experimental techniques developed and employed for its investigation are described. The existing body of literature on experimental and theoretical studies of ICD processes in different atomic and molecular systems is reviewed.
RESUMO
Intermolecular processes offer unique decay mechanisms for complex systems to internally relax. Here, we report the observation of an intermolecular Coulombic decay channel in an endohedral fullerene, a holmium nitride complex (Ho_{3}N) embedded within a C_{80} fullerene, between neighboring holmium ions, and between the holmium complex and the carbon cage. By measuring the ions and the electrons in coincidence after XUV photoabsorption, we can isolate the different decay channels, which are found to be more prevalent relative to intra-atomic Auger decay.
RESUMO
Irradiation of matter with light tends to electronically excite atoms and molecules, with subsequent relaxation processes determining where the photon energy is ultimately deposited and electrons and ions produced. In weakly bound systems, intermolecular Coulombic decay (ICD) enables very efficient relaxation of electronic excitation through transfer of the excess energy to neighbouring atoms or molecules that then lose an electron and become ionized. Here we propose that the emission site and energy of the electrons released during this process can be controlled by coupling the ICD to a resonant core excitation. We illustrate this concept with ab initio many-body calculations on the argon-krypton model system, where resonant photoabsorption produces an initial or 'parent' excitation of the argon atom, which then triggers a resonant-Auger-ICD cascade that ends with the emission of a slow electron from the krypton atom. Our calculations show that the energy of the emitted electrons depends sensitively on the initial excited state of the argon atom. The incident energy can thus be adjusted both to produce the initial excitation in a chosen atom and to realize an excitation that will result in the emission of ICD electrons with desired energies. These properties of the decay cascade might have consequences for fundamental and applied radiation biology and could be of interest in the development of new spectroscopic techniques.
RESUMO
LiHe is an intriguing open-shell dimer. It is an extremely weakly bound system, and its vibrational bound-state radius extends far into the classically forbidden regions. Exciting helium into 1s2p leads to a 2Σ and a 2Π state, in which lithium is in its ground state. These states are located above the ionization threshold of the Li atom, which makes them metastable, i.e., resonance states. Under these conditions, energy transfer between the atoms over large distances is feasible within the framework of interatomic Coulombic decay (ICD). These states are investigated theoretically; herein, we present and analyze the complex potential energy curves of the 2Σ and 2Π states, where their imaginary parts describe the decay rate of these resonance states. We employ the resonance via Padé approach to calculate these potentials. Thereby, we use the equation-of-motion coupled-cluster method to compute stabilization graphs as input data for the analytical dilation (via Padé) into the complex energy plane. The procedure is suitable for studying Feshbach resonances and ICD states such as the LiHe 2Σ and 2Π states. The resulting ab initio complex potential energy curves will be used in future work to describe the dynamics of the process HeLi + hν â He*Li â HeLi+ + eICD, which is amenable to experiment.
RESUMO
We report the observation of the radiative decay of singly charged noble gas ground-state ions embedded in heterogeneous van der Waals clusters. Electron-photon coincidence spectroscopy and dispersed photon spectroscopy are applied to identify the radiative charge transfer from Kr atoms to a Ne_{2}^{+} dimer, which forms after single valence photoionization of Ne atoms at the surface of a NeKr cluster. This mechanism might be a fundamental decay process of ionized systems in an environment.
RESUMO
Electron transfer mediated decay (ETMD) is a process responsible for double ionization of dopants in He droplets. It is initiated by producing He+ in the droplet, which is neutralized by ETMD, and has been shown to strongly enhance the dopant's double ionization cross section. The efficiency of ETMD, the spectra of emitted secondary electrons, and the character of the ionic products depend on the nuclear dynamics during the decay. To date, there has been no theoretical investigation of multimode dynamics which accompanies ETMD, which could help to understand such dynamics in a He droplet. In this article, we consider the He-Li2 cluster where an ab initio examination of multimode dynamics during the electronic decay is feasible. Moreover, this cluster can serve as a minimal model for Li2 adsorbed on the droplet's surface-a system where ETMD can be observed experimentally. In He droplets, Li2 can be formed in both the ground X1Σg + and the first excited a3Σu + states. In this article, we present ab initio potential energy surfaces of the electronic states of the He-Li2 cluster involved in ETMD, as well as the respective decay widths. We show that the structure of these surfaces and expected nuclear dynamics strongly depend on the electronic state of Li2. Thus, the overall decay rate and the appearance of the observable electron spectra will be dictated by the electronic structure of the dopant.
RESUMO
Charge transfer (CT) at avoided crossings of excited ionized states of argon dimers is observed using a two-color pump-probe experiment at the free-electron laser in Hamburg (FLASH). The process is initiated by the absorption of three 27-eV-photons from the pump pulse, which leads to the population of Ar2+*-Ar states. Due to nonadiabatic coupling between these one-site doubly ionized states and two-site doubly ionized states of the type Ar+*-Ar+, CT can take place leading to the population of the latter states. The onset of this process is probed by a delayed infrared (800 nm) laser pulse. The latter ionizes the dimers populating repulsive Ar2+ -Ar+ states, which then undergo a Coulomb explosion. From the delay-dependent yields of the obtained Ar2+ and Ar+ ions, the lifetime of the charge-transfer process is extracted. The obtained experimental value of (531 ± 136) fs agrees well with the theoretical value computed from Landau-Zener probabilities.
RESUMO
Using electron spectroscopy, we investigated the nanoplasma formation process generated in xenon clusters by intense soft x-ray free electron laser (FEL) pulses. We found clear FEL intensity dependence of electron spectra. Multistep ionization and subsequent ionization frustration features are evident for the low FEL-intensity region, and the thermal electron emission emerges at the high FEL intensity. The present FEL intensity dependence of the electron spectra is well addressed by the frustration parameter introduced by Arbeiter and Fennel [New J. Phys. 13, 053022 (2011)].
RESUMO
The ultrafast transfer of excitation energy from one atom to its neighbor is observed in singly charged argon dimers in a time-resolved extreme ultraviolet (XUV)-pump IR-probe experiment. In the pump step, bound 3s-hole states in the dimer are populated by single XUV-photon ionization. The excitation-energy transfer at avoided crossings of the potential-energy curves leads to dissociation of the dimer, which is experimentally observed by further ionization with a time-delayed IR-probe pulse. From the measured pump-probe delay-dependent kinetic-energy release of coincident Ar+ + Ar+ ions, we conclude that the transfer of energy occurs on a time scale of about 800fs. This mechanism represents a fast relaxation process below the energy threshold for interatomic Coulombic decay.
RESUMO
The impact of the solvent on the photodissociation of embedded molecules has been intensively investigated in the last decades. Collisions of photofragments with the solvating atoms or molecules can change their kinetic energy distribution or even lead to the de-excitation of the dissociating molecule to a bound electronic state quenching the dissociation. In this article we show that this cage effect is strongly enhanced if interatomic Coulombic decay (ICD) of the excited state becomes allowed. Ab initio calculations in H2O-Cl(-) cluster show that the ultra-fast dissociation of water in the à excited state is strongly quenched by ICD. We found that this very efficient quenching is due to two factors. First, the lifetimes of the à state due to ICD are short ranging between 6 and 30 fs. Second, nuclear dynamics is dominated by the chattering motion of the H atom between O and Cl(-) allowing ICD to act for longer times. We hope that this work will be an important first step in clarifying the impact of ICD on photodissociation of embedded molecules.
RESUMO
The X-ray absorption spectra (XAS) of Ar2 and ArNe dimers and small Ar clusters in the L2,3 region (244-252 eV) of the Ar atom have been recorded using synchrotron light and a combination of coincidence methods and kinetic energy discrimination of energetic ions. The absorption peaks in the spectra of the dimers and clusters were found to be shifted and broadened relative to the peaks in the spectrum of the Ar atom. In order to unambiguously relate these chemical shifts to the electronic structure of the core excited states in dimers, we performed ab initio calculations of the XAS spectra. Implications of the results for the use of XAS as a structure determination method in large rare gas clusters are discussed.
RESUMO
Ionization satellites are key ingredients in the control of post ionization processes such as molecular dissociation and interatomic Coulombic decay. Here, using the high-level ab initio method of multi-reference configuration interaction up to triple excitations, we study the potential energy curves (PECs) of the ionization satellites of the ArHe dimer. With this model system, we demonstrate that the simple model used in alkaline earth metal and rare gas complexes to describe the satellites as a Rydberg electron moving on top of a dicationic core does not fully hold for the rare gas clusters. The more complex valence structure in the rare gas atom leads to the mixing of different electronic configurations of the dimer. This prevents one from assigning a single dicationic parent state to some of the ionization satellites. We further analyze the structure of the different PECs, demonstrating how the density of the Rydberg electron is reflected in the structure of the PEC wherever the simple model is applicable.
RESUMO
In this work we investigate interatomic electronic decay processes taking place in mixed argon-xenon clusters upon the inner-valence ionization of an argon center. We demonstrate that both interatomic Coulombic decay and electron-transfer mediated decay (ETMD) are important in larger rare gas clusters as opposed to dimers. Calculated secondary electron spectra are shown to depend strongly on the spin-orbit coupling in the final states of the decay as well as the presence of polarizable environment. It follows from our calculations that ETMD is a pure interface process taking place between the argon-xenon layers. The interplay of all these effects is investigated in order to arrive at a suitable physical model for the decay of inner-valence vacancies taking place in mixed ArXe clusters.
RESUMO
After ionization of an inner-valence electron of molecules, the resulting cation-radicals store substantial internal energy which, if sufficient, can trigger ejection of an additional electron in an Auger decay usually followed by molecule fragmentation. In the environment, intermolecular Coulombic decay (ICD) and electron-transfer mediated decay (ETMD) are also operative, resulting in one or two electrons being ejected from a neighbor, thus preventing the fragmentation of the initially ionized molecule. These relaxation processes are investigated theoretically for prototypical heterocycle-water complexes of imidazole, pyrrole, and pyridine. It is found that the hydrogen-bonding site of the water molecule critically influences the nature and energetics of the electronic states involved, opening or closing certain relaxation processes of the inner-valence ionized system. Our results indicate that the relaxation mechanisms of biologically relevant systems with inner-valence vacancies on their carbon atoms can strongly depend on the presence of the electron-density donating or accepting neighbor, either water or another biomolecule.
RESUMO
In this work we demonstrate that the interatomic Coulombic decay (ICD), an ultrafast electron relaxation process known for atoms and molecules, is possible in general binding potentials. We used the multiconfiguration time-dependent Hartree method for fermions to study ICD in real time in a two-electron model system of two potential wells. Two decay channels were identified and analyzed by using the box stabilization analysis as well as by evaluating the autocorrelation function and measuring the outgoing electron flux during time-propagations. The total and partial ICD widths of an excited state localized in one potential well as a function of the distance between the two potentials was obtained. Finally, we discuss the results with a view to a possible application of ICD in quantum dot technology.
RESUMO
We computed fully quantum nuclear dynamics, which accompanies electron transfer mediated decay (ETMD) in weakly bound polyatomic clusters. We considered two HeLi2 clusters - with Li2 being either in the singlet electronic ground state or in the triplet first excited state - in which ETMD takes place after ionization of He. The electron transfer from Li2 to He+ leads to the emission of another electron from Li2 into the continuum. Due to the weak binding of He to Li2 in the initial states of both clusters, the involved nuclear wavepackets are very extended. This makes both the calculation of their evolution and the interpretation of the results difficult. We showed that despite the highly delocalized nature of the wavepackets the nuclear dynamics in the decaying state is imprinted on the ETMD electron spectra. The analysis of the latter helps understanding the effect which electronic structure and binding strength in the cluster produce on the quantum motion of the nuclei in the decaying state. The results produce a detailed picture of this important charge transfer process in polyatomic systems.
RESUMO
An ultrafast mechanism belonging to the family of interatomic Coulombic decay (ICD) phenomena is proposed. When two excited species are present, an ultrafast energy transfer can take place bringing one of them to its ground state and ionizing the other one. It is shown that if large homoatomic clusters are exposed to an ultrashort and intense laser pulse whose photon energy is in resonance with an excitation transition of the cluster constituents, the large majority of ions will be produced by this ICD mechanism rather than by two-photon ionization. A related collective-ICD process that is operative in heteroatomic systems is also discussed.
RESUMO
The removal of electrons located in the core shells of molecules creates transient states that live between a few femtoseconds to attoseconds. Owing to these short lifetimes, time-resolved studies of these states are challenging and complex molecular dynamics driven solely by electronic correlation are difficult to observe. Here, we obtain few-femtosecond core-excited state lifetimes of iodine monochloride by using attosecond transient absorption on iodine 4d-16p transitions around 55 eV. Core-level ligand field splitting allows direct access of excited states aligned along and perpendicular to the ICl molecular axis. Lifetimes of 3.5 ± 0.4 fs and 4.3 ± 0.4 fs are obtained for core-hole states parallel to the bond and 6.5 ± 0.6 fs and 6.9 ± 0.6 fs for perpendicular states, while nuclear motion is essentially frozen on this timescale. Theory shows that the dramatic decrease of lifetime for core-vacancies parallel to the covalent bond is a manifestation of non-local interactions with the neighboring Cl atom of ICl.
RESUMO
The increasing availability of X-ray free-electron lasers (XFELs) has catalyzed the development of single-object structural determination and of structural dynamics tracking in real-time. Disentangling the molecular-level reactions triggered by the interaction with an XFEL pulse is a fundamental step towards developing such applications. Here we report real-time observations of XFEL-induced electronic decay via short-lived transient electronic states in the diiodomethane molecule, using a femtosecond near-infrared probe laser. We determine the lifetimes of the transient states populated during the XFEL-induced Auger cascades and find that multiply charged iodine ions are issued from short-lived (â¼20 fs) transient states, whereas the singly charged ones originate from significantly longer-lived states (â¼100 fs). We identify the mechanisms behind these different time scales: contrary to the short-lived transient states which relax by molecular Auger decay, the long-lived ones decay by an interatomic Coulombic decay between two iodine atoms, during the molecular fragmentation.
RESUMO
Recently, a computational technique for ab initio calculation of the interatomic and intermolecular nonradiative decay processes has been developed [V. Averbukh and L. S. Cederbaum, J. Chem. Phys. 123, 204107 (2005)]. It combines the Fano formalism with the Green's function method known as the algebraic diagrammatic construction. The problem of normalization of continuum wave functions stemming from the use of the Gaussian basis sets is solved by using the Stieltjes imaging technique. In the present paper, the methodology is extended in order to describe the interatomic decay of excited doubly ionized states of clusters. The new computational scheme is applied to compute the interatomic decay rates of doubly ionized states formed by Auger relaxation of core vacancies in NeAr and MgNe van der Waals clusters.