Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chromosome Res ; 31(3): 21, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37592171

RESUMO

Chromosome instability (CIN) is a cancer hallmark that drives tumour heterogeneity, phenotypic adaptation, drug resistance and poor prognosis. High-grade serous ovarian cancer (HGSOC), one of the most chromosomally unstable tumour types, has a 5-year survival rate of only ~30% - largely due to late diagnosis and rapid development of drug resistance, e.g., via CIN-driven ABCB1 translocations. However, CIN is also a cell cycle vulnerability that can be exploited to specifically target tumour cells, illustrated by the success of PARP inhibitors to target homologous recombination deficiency (HRD). However, a lack of appropriate models with ongoing CIN has been a barrier to fully exploiting disease-specific CIN mechanisms. This barrier is now being overcome with the development of patient-derived cell cultures and organoids. In this review, we describe our progress building a Living Biobank of over 120 patient-derived ovarian cancer models (OCMs), predominantly from HGSOC. OCMs are highly purified tumour fractions with extensive proliferative potential that can be analysed at early passage. OCMs have diverse karyotypes, display intra- and inter-patient heterogeneity and mitotic abnormality rates far higher than established cell lines. OCMs encompass a broad-spectrum of HGSOC hallmarks, including a range of p53 alterations and BRCA1/2 mutations, and display drug resistance mechanisms seen in the clinic, e.g., ABCB1 translocations and BRCA2 reversion. OCMs are amenable to functional analysis, drug-sensitivity profiling, and multi-omics, including single-cell next-generation sequencing, and thus represent a platform for delineating HGSOC-specific CIN mechanisms. In turn, our vision is that this understanding will inform the design of new therapeutic strategies.


Assuntos
Transtornos Cromossômicos , Neoplasias Ovarianas , Humanos , Feminino , Proteína BRCA1/genética , Bancos de Espécimes Biológicos , Proteína BRCA2 , Neoplasias Ovarianas/genética , Translocação Genética , Instabilidade Cromossômica
2.
NAR Cancer ; 4(4): zcac036, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36381271

RESUMO

High-grade serous ovarian cancer (HGSOC) is an aggressive disease that typically develops drug resistance, thus novel biomarker-driven strategies are required. Targeted therapy focuses on synthetic lethality-pioneered by PARP inhibition of BRCA1/2-mutant disease. Subsequently, targeting the DNA replication stress response (RSR) is of clinical interest. However, further mechanistic insight is required for biomarker discovery, requiring sensitive models that closely recapitulate HGSOC. We describe an optimized proliferation assay that we use to screen 16 patient-derived ovarian cancer models (OCMs) for response to RSR inhibitors (CHK1i, WEE1i, ATRi, PARGi). Despite genomic heterogeneity characteristic of HGSOC, measurement of OCM proliferation was reproducible and reflected intrinsic tumour-cell properties. Surprisingly, RSR targeting drugs were not interchangeable, as sensitivity to the four inhibitors was not correlated. Therefore, to overcome RSR redundancy, we screened the OCMs with all two-, three- and four-drug combinations in a multiple-low-dose strategy. We found that low-dose CHK1i-ATRi had a potent anti-proliferative effect on 15 of the 16 OCMs, and was synergistic with potential to minimise treatment resistance and toxicity. Low-dose ATRi-CHK1i induced replication catastrophe followed by mitotic exit and post-mitotic arrest or death. Therefore, this study demonstrates the potential of the living biobank of OCMs as a drug discovery platform for HGSOC.

3.
Nat Commun ; 11(1): 822, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054838

RESUMO

High-grade serous ovarian carcinoma is characterised by TP53 mutation and extensive chromosome instability (CIN). Because our understanding of CIN mechanisms is based largely on analysing established cell lines, we developed a workflow for generating ex vivo cultures from patient biopsies to provide models that support interrogation of CIN mechanisms in cells not extensively cultured in vitro. Here, we describe a "living biobank" of ovarian cancer models with extensive replicative capacity, derived from both ascites and solid biopsies. Fifteen models are characterised by p53 profiling, exome sequencing and transcriptomics, and karyotyped using single-cell whole-genome sequencing. Time-lapse microscopy reveals catastrophic and highly heterogeneous mitoses, suggesting that analysis of established cell lines probably underestimates mitotic dysfunction in advanced human cancers. Drug profiling reveals cisplatin sensitivities consistent with patient responses, demonstrating that this workflow has potential to generate personalized avatars with advantages over current pre-clinical models and the potential to guide clinical decision making.


Assuntos
Bancos de Espécimes Biológicos , Mitose/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Instabilidade Cromossômica , Resistencia a Medicamentos Antineoplásicos , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Técnicas Histológicas/métodos , Humanos , Imageamento Tridimensional , Hibridização in Situ Fluorescente , Técnicas In Vitro , Cariotipagem , Modelos Biológicos , Mutação , Neoplasias Ovarianas/tratamento farmacológico , Paclitaxel/farmacologia , Análise de Célula Única , Imagem com Lapso de Tempo , Proteína Supressora de Tumor p53/genética , Sequenciamento do Exoma
4.
Cancer Cell ; 35(3): 519-533.e8, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30889383

RESUMO

Inhibitors of poly(ADP-ribose) polymerase (PARP) have demonstrated efficacy in women with BRCA-mutant ovarian cancer. However, only 15%-20% of ovarian cancers harbor BRCA mutations, therefore additional therapies are required. Here, we show that a subset of ovarian cancer cell lines and ex vivo models derived from patient biopsies are sensitive to a poly(ADP-ribose) glycohydrolase (PARG) inhibitor. Sensitivity is due to underlying DNA replication vulnerabilities that cause persistent fork stalling and replication catastrophe. PARG inhibition is synthetic lethal with inhibition of DNA replication factors, allowing additional models to be sensitized by CHK1 inhibitors. Because PARG and PARP inhibitor sensitivity are mutually exclusive, our observations demonstrate that PARG inhibitors have therapeutic potential to complement PARP inhibitor strategies in the treatment of ovarian cancer.


Assuntos
Replicação do DNA/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Neoplasias Ovarianas/genética , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Feminino , Glicosídeo Hidrolases/antagonistas & inibidores , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/enzimologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Quinazolinonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA