Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Blood Cells Mol Dis ; 97: 102688, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35717902

RESUMO

Erythropoiesis is a tightly regulated process. It is stimulated by decreased oxygen in circulation, which leads to the secretion of the hormone erythropoietin (Epo) by the kidneys. An additional layer of control involves the coordinated sensing and use of nutrients. Much cellular machinery contributes to sensing and responding to nutrient status in cells, and one key participant is the kinase LKB1. The current study examines the role of LKB1 in erythropoiesis using a murine in vivo and ex vivo conditional knockout system. In vivo analysis showed erythroid loss of LKB1 to be associated with a robust increase in serum Epo and mild reticulocytosis. Despite these abnormalities, no evidence of anemia or hemolysis was found. Further characterization using an ex vivo progenitor culture assay demonstrated accelerated erythroid maturation in the LKB1-deficient cells. Based on pharmacologic evidence, this phenotype appeared to result from impaired AMP-activated protein kinase (AMPK) signaling downstream of LKB1. These findings reveal a role for LKB1 in fine-tuning Epo-driven erythropoiesis in association with maturational control.


Assuntos
Proteínas Quinases Ativadas por AMP , Células Precursoras Eritroides , Eritropoese , Eritropoetina , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Células Precursoras Eritroides/metabolismo , Eritropoese/genética , Eritropoese/fisiologia , Eritropoetina/genética , Eritropoetina/metabolismo , Humanos , Fígado/metabolismo , Camundongos , Receptores da Eritropoetina/genética , Receptores da Eritropoetina/metabolismo
2.
Haematologica ; 105(4): 905-913, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31171641

RESUMO

Healthy bone marrow progenitors yield a co-ordinated balance of hematopoietic lineages. This balance shifts with aging toward enhanced granulopoiesis with diminished erythropoiesis and lymphopoiesis, changes which likely contribute to the development of bone marrow disorders in the elderly. In this study, RUNX3 was identified as a hematopoietic stem and progenitor cell factor whose levels decline with aging in humans and mice. This decline is exaggerated in hematopoietic stem and progenitor cells from subjects diagnosed with unexplained anemia of the elderly. Hematopoietic stem cells from elderly unexplained anemia patients had diminished erythroid but unaffected granulocytic colony forming potential. Knockdown studies revealed human hematopoietic stem and progenitor cells to be strongly influenced by RUNX3 levels, with modest deficiencies abrogating erythroid differentiation at multiple steps while retaining capacity for granulopoiesis. Transcriptome profiling indicated control by RUNX3 of key erythroid transcription factors, including KLF1 and GATA1 These findings thus implicate RUNX3 as a participant in hematopoietic stem and progenitor cell aging, and a key determinant of erythroid-myeloid lineage balance.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Idoso , Envelhecimento , Animais , Diferenciação Celular , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Eritropoese , Humanos , Camundongos
3.
Blood ; 120(20): 4219-28, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22983445

RESUMO

In red cell development, the differentiation program directed by the transcriptional regulator GATA1 requires signaling by the cytokine erythropoietin, but the mechanistic basis for this signaling requirement has remained unknown. Here we show that erythropoietin regulates GATA1 through protein kinase D activation, promoting histone deacetylase 5 (HDAC5) dissociation from GATA1, and subsequent GATA1 acetylation. Mice deficient for HDAC5 show resistance to anemic challenge and altered marrow responsiveness to erythropoietin injections. In ex vivo studies, HDAC5(-/-) progenitors display enhanced entry into and passage through the erythroid lineage, as well as evidence of erythropoietin-independent differentiation. These results reveal a molecular pathway that contributes to cytokine regulation of hematopoietic differentiation and offer a potential mechanism for fine tuning of lineage-restricted transcription factors by lineage-specific cytokines.


Assuntos
Eritropoese/fisiologia , Fator de Transcrição GATA1/fisiologia , Histona Desacetilases/fisiologia , Proteína Quinase C/fisiologia , Acetilação , Anemia/enzimologia , Anemia/genética , Anemia/patologia , Animais , Carbazóis/farmacologia , Linhagem da Célula , Citocinas/fisiologia , Ativação Enzimática , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/enzimologia , Eritropoese/efeitos dos fármacos , Eritropoetina/farmacologia , Eritropoetina/uso terapêutico , Humanos , Indóis/farmacologia , Maleimidas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Transdução de Sinais
4.
Front Biosci (Schol Ed) ; 16(2): 10, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38939973

RESUMO

The ETS transcription factor PU.1 plays an essential role in blood cell development. Its precise expression pattern is governed by cis-regulatory elements (CRE) acting at the chromatin level. CREs mediate the fine-tuning of graded levels of PU.1, deviations of which can cause acute myeloid leukemia. In this review, we perform an in-depth analysis of the regulation of PU.1 expression in normal and malignant hematopoiesis. We elaborate on the role of trans-acting factors and the biomolecular interplays in mediating local chromatin dynamics. Moreover, we discuss the current understanding of CRE bifunctionality exhibiting enhancer or silencer activities in different blood cell lineages and future directions toward gene-specific chromatin-targeted therapeutic development.


Assuntos
Hematopoese , Proteínas Proto-Oncogênicas , Transativadores , Humanos , Hematopoese/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/genética , Transativadores/metabolismo , Linhagem da Célula , Animais , Transcrição Gênica , Regulação da Expressão Gênica , Leucemia Mieloide Aguda/genética , Cromatina/metabolismo , Cromatina/genética
5.
bioRxiv ; 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38260486

RESUMO

The precise spatio-temporal expression of the hematopoietic ETS transcription factor PU.1 that determines the hematopoietic cell fates is tightly regulated at the chromatin level. However, it remains elusive as to how chromatin signatures are linked to this dynamic expression pattern of PU.1 across blood cell lineages. Here we performed an unbiased and in-depth analysis of the relationship between human PU.1 expression, the presence of trans-acting factors, and 3D architecture at various cis-regulatory elements (CRE) proximal to the PU.1 locus. We identified multiple novel CREs at the upstream region of the gene following an integrative inspection for conserved DNA elements at the chromatin-accessible regions in primary human blood lineages. We showed that a subset of CREs localize within a 10 kb-wide cluster that exhibits that exhibit molecular features of a myeloid-specific super-enhancer involved in mediating PU.1 autoregulation, including open chromatin, unmethylated DNA, histone enhancer marks, transcription of enhancer RNAs, and occupancy of the PU.1 protein itself. Importantly, we revealed the presence of common 35-kb-wide CTCF-bound insulated neighborhood that contains the CRE cluster, forming the chromatin territory for lineage-specific and CRE-mediated chromatin interactions. These include functional CRE-promoter interactions in myeloid and B cells but not in erythroid and T cells. Our findings also provide mechanistic insights into the interplay between dynamic chromatin structure and 3D architecture in defining certain CREs as enhancers or silencers in chromatin regulation of PU.1 expression. The study lays the groundwork for further examination of PU.1 CREs as well as epigenetic regulation in malignant hematopoiesis.

6.
J Biol Chem ; 287(23): 19207-15, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22514271

RESUMO

Signaling via the intracellular second messenger cyclic AMP (cAMP) has long been implicated in the repression of megakaryocytic differentiation. However, the mechanisms by which cAMP signaling impairs megakaryopoiesis have never been elucidated. In a human CD34(+) cell culture model, we show that the adenylyl cyclase agonist forskolin inhibits megakaryocytic differentiation in a protein kinase A-dependent manner. Using this system to screen for downstream effectors, we identified the transcription factor E2A as a key target in a novel repressive signaling pathway. Specifically, forskolin acting through protein kinase A-induced E2A down-regulation and enforced expression of E2A overrode the inhibitory effects of forskolin on megakaryopoiesis. The dependence of megakaryopoiesis on critical thresholds of E2A expression was confirmed in vivo in haploinsufficient mice and ex vivo using shRNA knockdown in human progenitors. Using a variety of approaches, we further identified p21 (encoded by CDKN1A) as a functionally important megakaryopoietic regulator residing downstream of E2A. These results thus implicate the E2A-CDKN1A transcriptional axis in the control of megakaryopoiesis and reveal the lineage-selective inhibition of this axis as a likely mechanistic basis for the inhibitory effects of cAMP signaling.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , AMP Cíclico/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Megacariócitos/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Trombopoese/fisiologia , Transcrição Gênica/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/fisiologia , AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Células HEK293 , Humanos , Megacariócitos/citologia , Camundongos , Camundongos Mutantes
7.
Blood ; 116(1): 97-108, 2010 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-20407036

RESUMO

Human red cell differentiation requires the action of erythropoietin on committed progenitor cells. In iron deficiency, committed erythroid progenitors lose responsiveness to erythropoietin, resulting in hypoplastic anemia. To address the basis for iron regulation of erythropoiesis, we established primary hematopoietic cultures with transferrin saturation levels that restricted erythropoiesis but permitted granulopoiesis and megakaryopoiesis. Experiments in this system identified as a critical regulatory element the aconitases, multifunctional iron-sulfur cluster proteins that metabolize citrate to isocitrate. Iron restriction suppressed mitochondrial and cytosolic aconitase activity in erythroid but not granulocytic or megakaryocytic progenitors. An active site aconitase inhibitor, fluorocitrate, blocked erythroid differentiation in a manner similar to iron deprivation. Exogenous isocitrate abrogated the erythroid iron restriction response in vitro and reversed anemia progression in iron-deprived mice. The mechanism for aconitase regulation of erythropoiesis most probably involves both production of metabolic intermediates and modulation of erythropoietin signaling. One relevant signaling pathway appeared to involve protein kinase Calpha/beta, or possibly protein kinase Cdelta, whose activities were regulated by iron, isocitrate, and erythropoietin.


Assuntos
Células Precursoras Eritroides/efeitos dos fármacos , Eritropoese/efeitos dos fármacos , Proteína 1 Reguladora do Ferro/metabolismo , Ferro/farmacologia , Anemia Ferropriva/sangue , Anemia Ferropriva/etiologia , Anemia Ferropriva/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/metabolismo , Feminino , Citometria de Fluxo , Humanos , Immunoblotting , Deficiências de Ferro , Proteína 1 Reguladora do Ferro/genética , Isocitratos/administração & dosagem , Células K562 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos
8.
J Clin Invest ; 132(19)2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-35925681

RESUMO

Infantile (fetal and neonatal) megakaryocytes (Mks) have a distinct phenotype consisting of hyperproliferation, limited morphogenesis, and low platelet production capacity. These properties contribute to clinical problems that include thrombocytopenia in neonates, delayed platelet engraftment in recipients of cord blood stem cell transplants, and inefficient ex vivo platelet production from pluripotent stem cell-derived Mks. The infantile phenotype results from deficiency of the actin-regulated coactivator, MKL1, which programs cytoskeletal changes driving morphogenesis. As a strategy to complement this molecular defect, we screened pathways with the potential to affect MKL1 function and found that DYRK1A inhibition dramatically enhanced Mk morphogenesis in vitro and in vivo. Dyrk1 inhibitors rescued enlargement, polyploidization, and thrombopoiesis in human neonatal Mks. Mks derived from induced pluripotent stem cells responded in a similar manner. Progenitors undergoing Dyrk1 inhibition demonstrated filamentous actin assembly, MKL1 nuclear translocation, and modulation of MKL1 target genes. Loss-of-function studies confirmed MKL1 involvement in this morphogenetic pathway. Expression of Ablim2, a stabilizer of filamentous actin, increased with Dyrk1 inhibition, and Ablim2 knockdown abrogated the actin, MKL1, and morphogenetic responses to Dyrk1 inhibition. These results delineate a pharmacologically tractable morphogenetic pathway whose manipulation may alleviate clinical problems associated with the limited thrombopoietic capacity of infantile Mks.


Assuntos
Megacariócitos , Trombocitopenia , Actinas/metabolismo , Plaquetas/metabolismo , Humanos , Recém-Nascido , Megacariócitos/metabolismo , Fenótipo , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Trombocitopenia/genética , Trombopoese/genética , Quinases Dyrk
9.
Nat Chem Biol ; 5(4): 236-43, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19172146

RESUMO

It has been proposed that inhibitors of an oncogene's effects on multipotent hematopoietic progenitor cell differentiation may change the properties of the leukemic stem cells and complement the clinical use of cytotoxic drugs. Using zebrafish, we developed a robust in vivo hematopoietic differentiation assay that reflects the activity of the oncogene AML1-ETO. Screening for modifiers of AML1-ETO-mediated hematopoietic dysregulation uncovered unexpected roles of COX-2- and beta-catenin-dependent pathways in AML1-ETO function. This approach may open doors for developing therapeutics targeting oncogene function within leukemic stem cells.


Assuntos
Proteínas Oncogênicas/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Diferenciação Celular , Dinoprostona , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Humanos , Células K562 , Nitrobenzenos , Proteínas Oncogênicas/genética , Bibliotecas de Moléculas Pequenas , Sulfonamidas , Fatores de Transcrição , Peixe-Zebra , beta Catenina
10.
Nat Commun ; 12(1): 1645, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712594

RESUMO

Anemias of chronic disease and inflammation (ACDI) result from restricted iron delivery to erythroid progenitors. The current studies reveal an organellar response in erythroid iron restriction consisting of disassembly of the microtubule cytoskeleton and associated Golgi disruption. Isocitrate supplementation, known to abrogate the erythroid iron restriction response, induces reassembly of microtubules and Golgi in iron deprived progenitors. Ferritin, based on proteomic profiles, regulation by iron and isocitrate, and putative interaction with microtubules, is assessed as a candidate mediator. Knockdown of ferritin heavy chain (FTH1) in iron replete progenitors induces microtubule collapse and erythropoietic blockade; conversely, enforced ferritin expression rescues erythroid differentiation under conditions of iron restriction. Fumarate, a known ferritin inducer, synergizes with isocitrate in reversing molecular and cellular defects of iron restriction and in oral remediation of murine anemia. These findings identify a cytoskeletal component of erythroid iron restriction and demonstrate potential for its therapeutic targeting in ACDI.


Assuntos
Anemia/metabolismo , Anemia/terapia , Citoesqueleto/metabolismo , Ferro/metabolismo , Microtúbulos/metabolismo , Animais , Proliferação de Células , Modelos Animais de Doenças , Células Eritroides/metabolismo , Eritropoese/fisiologia , Feminino , Ferritinas/metabolismo , Isocitratos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredutases/metabolismo , Proteômica
11.
Blood ; 112(13): 4884-94, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18780834

RESUMO

The transcription factor GATA-1 participates in programming the differentiation of multiple hematopoietic lineages. In megakaryopoiesis, loss of GATA-1 function produces complex developmental abnormalities and underlies the pathogenesis of megakaryocytic leukemia in Down syndrome. Its distinct functions in megakaryocyte and erythroid maturation remain incompletely understood. In this study, we identified functional and physical interaction of GATA-1 with components of the positive transcriptional elongation factor P-TEFb, a complex containing cyclin T1 and the cyclin-dependent kinase 9 (Cdk9). Megakaryocytic induction was associated with dynamic changes in endogenous P-TEFb composition, including recruitment of GATA-1 and dissociation of HEXIM1, a Cdk9 inhibitor. shRNA knockdowns and pharmacologic inhibition both confirmed contribution of Cdk9 activity to megakaryocytic differentiation. In mice with megakaryocytic GATA-1 deficiency, Cdk9 inhibition produced a fulminant but reversible megakaryoblastic disorder reminiscent of the transient myeloproliferative disorder of Down syndrome. P-TEFb has previously been implicated in promoting elongation of paused RNA polymerase II and in programming hypertrophic differentiation of cardiomyocytes. Our results offer evidence for P-TEFb cross-talk with GATA-1 in megakaryocytic differentiation, a program with parallels to cardiomyocyte hypertrophy.


Assuntos
Diferenciação Celular , Quinase 9 Dependente de Ciclina/fisiologia , Fator de Transcrição GATA1/metabolismo , Megacariócitos/citologia , Fator B de Elongação Transcricional Positiva/metabolismo , Receptor Cross-Talk , Animais , Células Cultivadas , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Síndrome de Down , Fator de Transcrição GATA1/genética , Humanos , Camundongos , Camundongos Knockout , Transtornos Mieloproliferativos
12.
J Cell Biochem ; 107(3): 377-82, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19350569

RESUMO

Transcription factors originally identified as drivers of erythroid differentiation subsequently became linked to megakaryopoiesis, reflecting the shared parentage of red cells and platelets. The divergent development of megakaryocytic and erythroid progenitors relies on signaling pathways that impose lineage-specific transcriptional programs on non-lineage-restricted protein complexes. One such signaling pathway involves RUNX1, a transcription factor upregulated in megakaryocytes and downregulated in erythroid cells. In this pathway, RUNX1 engages the erythro-megakaryocytic master regulator GATA-1 in a megakaryocytic transcriptional complex whose activity is highly dependent on the P-TEFb kinase complex. The implications of this pathway for normal and pathological megakaryopoiesis are discussed.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Fator de Transcrição GATA1/metabolismo , Megacariócitos/metabolismo , Fator B de Elongação Transcricional Positiva/metabolismo , Transcrição Gênica , Animais , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Fator de Transcrição GATA1/genética , Humanos , Megacariócitos/citologia , Transdução de Sinais
13.
Cancer Res ; 66(6): 2990-6, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16540647

RESUMO

Human acute myeloid leukemias with the t(8;21) translocation express the AML1-ETO fusion protein in the hematopoietic stem cell compartment and show impairment in erythroid differentiation. This clinical finding is reproduced in multiple murine and cell culture model systems in which AML1-ETO specifically interferes with erythroid maturation. Using purified normal human early hematopoietic progenitor cells, we find that AML1-ETO impedes the earliest discernable steps of erythroid lineage commitment. Correspondingly, GATA-1, a central transcriptional regulator of erythroid differentiation, undergoes repression by AML1-ETO in a nonconventional histone deacetylase-independent manner. In particular, GATA-1 acetylation by its transcriptional coactivator, p300/CBP, a critical regulatory step in programming erythroid development, is efficiently blocked by AML1-ETO. Fusion of a heterologous E1A coactivator recruitment module to GATA-1 overrides the inhibitory effects of AML1-ETO on GATA-1 acetylation and transactivation. Furthermore, the E1A-GATA-1 fusion, but not wild-type GATA-1, rescues erythroid lineage commitment in primary human progenitors expressing AML1-ETO. These results ascribe a novel repressive mechanism to AML1-ETO, blockade of GATA-1 acetylation, which correlates with its inhibitory effects on primary erythroid lineage commitment.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Células Precursoras Eritroides/fisiologia , Fator de Transcrição GATA1/metabolismo , Proteínas de Fusão Oncogênica/fisiologia , Acetilação , Antígenos CD34/biossíntese , Antígenos CD34/imunologia , Antígenos CD36/biossíntese , Antígenos CD36/imunologia , Diferenciação Celular/fisiologia , Linhagem Celular , Linhagem da Célula , Subunidade alfa 2 de Fator de Ligação ao Core/biossíntese , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/imunologia , Células Precursoras Eritroides/metabolismo , Humanos , Células K562 , Proteínas de Fusão Oncogênica/biossíntese , Proteínas de Fusão Oncogênica/genética , Proteína 1 Parceira de Translocação de RUNX1 , Ativação Transcricional , Transfecção , Dedos de Zinco/fisiologia , Fatores de Transcrição de p300-CBP/metabolismo
14.
Exp Hematol ; 61: 1-9, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29501467

RESUMO

Fetal megakaryocytes (Mks) differ from adult Mks in key parameters that affect their capacity for platelet production. However, despite being smaller, more proliferative, and less polyploid, fetal Mks generally mature in the same manner as adult Mks. The phenotypic features unique to fetal Mks predispose patients to several disease conditions, including infantile thrombocytopenia, infantile megakaryoblastic leukemias, and poor platelet recovery after umbilical cord blood stem cell transplantations. Ontogenic Mk differences also affect new strategies being developed to address global shortages of platelet transfusion units. These donor-independent, ex vivo production platforms are hampered by the limited proliferative capacity of adult-type Mks and the inferior platelet production by fetal-type Mks. Understanding the molecular programs that distinguish fetal versus adult megakaryopoiesis will help in improving approaches to these clinical problems. This review summarizes the phenotypic differences between fetal and adult Mks, the disease states associated with fetal megakaryopoiesis, and recent advances in the understanding of mechanisms that determine ontogenic Mk transitions.


Assuntos
Megacariócitos/citologia , Sangue Fetal/citologia , Humanos , Megacariócitos/patologia , Modelos Biológicos , Morfogênese/fisiologia , Fenótipo , Trombocitopenia/patologia
15.
Crit Rev Eukaryot Gene Expr ; 17(4): 271-80, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17725493

RESUMO

Runt-related transcription factor 1 (RUNX1) and GATA-1 are both transcription factors known to play essential roles in hematopoiesis. Genetic alterations of each are associated with abnormal platelet development, as well as predisposition to leukemia. In addition, in vitro and animal studies indicate that both factors are involved in megakaryopoiesis. We and others have previously shown that RUNX1 and GATA-1 physically interact and cooperate in the activation of megakaryocytic promoters such as alpha IIb integrin and glycoprotein Ibalpha. Moreover, transcriptional cooperation of RUNX1 with GATA-1 is conserved back to Drosophila in which RUNX1 and GATA-1 homologs cooperate in crystal cell development. In this article, we will review the molecular and functional significance of the transcriptional cross talk between RUNX1 and GATA-1. In particular, we will elaborate on recent data which suggest that GATA-1 targets RUNX1 for modification, in particular phosphorylation by cyclin-dependent kinases. Furthermore, targeting of RUNX1 by GATA-1 for phosphorylation may convert RUNX1 from a repressor to an activator. This is a potential mechanism of transcriptional cooperation and may be an essential step in megakaryocytic differentiation.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Fator de Transcrição GATA1/fisiologia , Regulação da Expressão Gênica/fisiologia , Transcrição Gênica/fisiologia , Animais , Fator de Transcrição GATA1/genética , Humanos , Megacariócitos/citologia , Camundongos , Mutação , Fosforilação
16.
Cancer Lett ; 251(2): 179-86, 2007 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-17125917

RESUMO

The leukemic fusion protein AML1-ETO occurs frequently in human acute myeloid leukemia (AML) and has received much attention over the past decade. An initial model for its pathogenetic effects emphasized the conversion of a hematopoietic transcriptional activator, RUNX1 (or AML1), into a leukemogenic repressor which blocked myeloid differentiation at the level of target gene regulation. This view has been absorbed into a larger picture of AML1-ETO pathogenesis, encompassing dysregulation of hematopoietic stem cell homeostasis at several mechanistic levels. Recent reports have highlighted a multifaceted capacity of AML1-ETO directly to inhibit key hematopoietic transcription factors that function as tumor suppressors at several nodal points during hematopoietic differentiation. A new model is presented in which AML1-ETO coordinates expansion of the stem cell compartment with diminished lineage commitment and with genome instability.


Assuntos
Medula Óssea/fisiologia , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Hematopoese , Leucemia Mieloide/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Doença Aguda , Animais , Diferenciação Celular , Células-Tronco Hematopoéticas/fisiologia , Humanos , Modelos Biológicos , Mutação , Proteína 1 Parceira de Translocação de RUNX1 , Proteínas Supressoras de Tumor/efeitos dos fármacos
17.
Mol Cell Biol ; 24(17): 7779-94, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15314183

RESUMO

Although Jun upregulation and activation have been established as critical to oncogenesis, the relevant downstream pathways remain incompletely characterized. In this study, we found that c-Jun blocks erythroid differentiation in primary human hematopoietic progenitors and, correspondingly, that Jun factors block transcriptional activation by GATA-1, the central regulator of erythroid differentiation. Mutagenesis of c-Jun suggested that its repression of GATA-1 occurs through a transcriptional mechanism involving activation of downstream genes. We identified the hairy-enhancer-of-split-related factor HERP2 as a novel gene upregulated by c-Jun. HERP2 showed physical interaction with GATA-1 and repressed GATA-1 transcriptional activation. Furthermore, transduction of HERP2 into primary human hematopoietic progenitors inhibited erythroid differentiation. These results thus define a novel regulatory pathway linking the transcription factors c-Jun, HERP2, and GATA-1. Furthermore, these results establish a connection between the Notch signaling pathway, of which the HERP factors are a critical component, and the GATA family, which participates in programming of cellular differentiation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Eritropoese/fisiologia , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Antígenos CD34 , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Proteínas de Ciclo Celular/genética , Diferenciação Celular , Fatores de Ligação de DNA Eritroide Específicos , Fator de Transcrição GATA1 , Sequências Hélice-Alça-Hélice , Células-Tronco Hematopoéticas/citologia , Humanos , Células K562 , Proteínas Proto-Oncogênicas c-jun/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética , Transcrição Gênica
18.
J Clin Invest ; 127(6): 2365-2377, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28481226

RESUMO

Hematopoietic transitions that accompany fetal development, such as erythroid globin chain switching, play important roles in normal physiology and disease development. In the megakaryocyte lineage, human fetal progenitors do not execute the adult morphogenesis program of enlargement, polyploidization, and proplatelet formation. Although these defects decline with gestational stage, they remain sufficiently severe at birth to predispose newborns to thrombocytopenia. These defects may also contribute to inferior platelet recovery after cord blood stem cell transplantation and may underlie inefficient platelet production by megakaryocytes derived from pluripotent stem cells. In this study, comparison of neonatal versus adult human progenitors has identified a blockade in the specialized positive transcription elongation factor b (P-TEFb) activation mechanism that is known to drive adult megakaryocyte morphogenesis. This blockade resulted from neonatal-specific expression of an oncofetal RNA-binding protein, IGF2BP3, which prevented the destabilization of the nuclear RNA 7SK, a process normally associated with adult megakaryocytic P-TEFb activation. Knockdown of IGF2BP3 sufficed to confer both phenotypic and molecular features of adult-type cells on neonatal megakaryocytes. Pharmacologic inhibition of IGF2BP3 expression via bromodomain and extraterminal domain (BET) inhibition also elicited adult features in neonatal megakaryocytes. These results identify IGF2BP3 as a human ontogenic master switch that restricts megakaryocyte development by modulating a lineage-specific P-TEFb activation mechanism, revealing potential strategies toward enhancing platelet production.


Assuntos
Megacariócitos/fisiologia , Proteínas de Ligação a RNA/fisiologia , Animais , Proliferação de Células , Feminino , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Hematopoese , Células-Tronco Hematopoéticas/fisiologia , Humanos , Recém-Nascido , Células K562 , Camundongos Endogâmicos C57BL , Ativação Transcricional
19.
Crit Rev Eukaryot Gene Expr ; 15(3): 207-16, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16390317

RESUMO

The chromosomal translocation t(8;21), generating the AML1-ETO fusion protein, is frequently associated with French-American-British (FAB) type M2 acute myeloid leukemia (AML). t(8;21) fuses the runt domain from the hematopoietic transcription factor RUNX1 with almost the entire transcriptional repressor ETO. AML1-ETO inhibits normal definitive hematopoiesis and blocks erythroid differentiation. Several mechanistic models for the role of AML1-ETO in leukemia development have emerged over the last decade. Most of these models have emphasized the capacity of the fusion protein to redirect repressive cofactors, such as histone deacetylases (HDACs) and DNA methyltransferases (DNMTs), to RUNX target genes, thereby reversing the hematopoietic transcriptional program activated by wild-type RUNX1a phenomenon referred to collectively in this review as the "classical" corepressor model. Because erythropoiesis occurs in a RUNX-independent manner, this dominant-negative "classical" model cannot explain the prominent repression of red-cell development by AML1-ETO. This review will consider the clinical and mechanistic significance of erythroid inhibition by AML1-ETO. Additional models to account for this mysterious oncogenic function are proposed.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Células Eritroides/citologia , Proteínas de Fusão Oncogênica/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Diferenciação Celular/genética , Células Cultivadas , Cromossomos Humanos Par 21 , Cromossomos Humanos Par 8 , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Eritropoese/genética , Fator de Transcrição GATA1/fisiologia , Histona Desacetilases/genética , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Proteínas de Fusão Oncogênica/genética , Proteína 1 Parceira de Translocação de RUNX1 , Transdução de Sinais/genética , Translocação Genética
20.
J Clin Invest ; 123(8): 3614-23, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23863711

RESUMO

The unique sensitivity of early red cell progenitors to iron deprivation, known as the erythroid iron restriction response, serves as a basis for human anemias globally. This response impairs erythropoietin-driven erythropoiesis and underlies erythropoietic repression in iron deficiency anemia. Mechanistically, the erythroid iron restriction response results from inactivation of aconitase enzymes and can be suppressed by providing the aconitase product isocitrate. Recent studies have implicated the erythroid iron restriction response in anemia of chronic disease and inflammation (ACDI), offering new therapeutic avenues for a major clinical problem; however, inflammatory signals may also directly repress erythropoiesis in ACDI. Here, we show that suppression of the erythroid iron restriction response by isocitrate administration corrected anemia and erythropoietic defects in rats with ACDI. In vitro studies demonstrated that erythroid repression by inflammatory signaling is potently modulated by the erythroid iron restriction response in a kinase-dependent pathway involving induction of the erythroid-inhibitory transcription factor PU.1. These results reveal the integration of iron and inflammatory inputs in a therapeutically tractable erythropoietic regulatory circuit.


Assuntos
Anemia/tratamento farmacológico , Células Eritroides/efeitos dos fármacos , Eritropoese/efeitos dos fármacos , Deficiências de Ferro , Isocitratos/farmacologia , Aconitato Hidratase/metabolismo , Anemia/metabolismo , Anemia/patologia , Animais , Células Cultivadas , Células Eritroides/enzimologia , Feminino , Humanos , Interferon gama/fisiologia , Isocitratos/uso terapêutico , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Ratos , Ratos Endogâmicos Lew , Transdução de Sinais , Transativadores/metabolismo , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA