Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Molecules ; 28(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37241778

RESUMO

The adsorptive performance of mesoporous silica-based materials towards inorganic (metal ions) and organic (dyes) water pollutants was investigated. Mesoporous silica materials with different particle size, surface area and pore volume were prepared and tailored with different functional groups. These materials were then characterised by solid-state techniques, namely vibrational spectroscopy, elemental analysis, scanning electron microscopy and nitrogen adsorption-desorption isotherms, allowing the successful preparation and structural modifications of the materials to be confirmed. The influence of the physicochemical properties of the adsorbents towards the removal of metal ions (Ni2+, Cu2+ and Fe3+) and organic dyes (methylene blue and methyl green) from aqueous solutions was also investigated. The results reveal that the exceptionally high surface area and suitable ζ-potential of the nanosized mesoporous silica nanoparticles (MSNPs) seem to favour the adsorptive capacity of the material for both types of water pollutants. Kinetic studies were performed for the adsorption of organic dyes by MSNPs and large-pore mesoporous silica (LPMS), suggesting that the process follows a pseudo-second-order model. The recyclability along consecutive adsorption cycles and the stability of the adsorbents after use were also investigated, showing that the material can be reused. Current results show the potentialities of novel silica-based material as a suitable adsorbent to remove pollutants from aquatic matrices with an applicability to reduce water pollution.

2.
J Environ Manage ; 134: 136-44, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24486467

RESUMO

The recovery of estuarine environments is in need. Phytoremediation could be a valid option to reduce pollution while preserving natural biodiversity. In this work, estuarine sediments colonized by Juncus maritimus or Phragmites australis were spiked with cadmium in the absence and in the presence of an autochthonous microbial consortium resistant to the metal. The aim of this study was to increase the potential for cadmium phytoremediation that these two halophyte plants have shown. Experiments were carried out in greenhouses with an automatic irrigation system that simulated estuarine tidal cycles. After 2 months, Cd concentration in P. australis stems increased up to 7 times when the rhizosphere was inoculated with the microbial consortium. So, P. australis phytoextraction potential was increased through autochthonous bioaugmentation. As for J. maritimus, up to 48% more Cd (total amount) was observed in its belowground tissues after being subjected to autochthonous bioaugmentation. Therefore, the phytostabilization potential of this plant was promoted. For both plants this increase in cadmium uptake did not cause significant signs of toxicity. Therefore, the addition of autochthonous microorganisms resistant to cadmium seems to be a valuable strategy to potentiate phytoremediation of this metal in saltmarshes, being useful for the recovery of moderately impacted estuaries. This will contribute for an effective management of these areas. Research on this topic regarding estuarine ecosystems, especially saltmarshes, is, to our knowledge, inexistent.


Assuntos
Cádmio/metabolismo , Magnoliopsida/metabolismo , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Estuários , Consórcios Microbianos , Rizosfera
3.
Nanomaterials (Basel) ; 14(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38727327

RESUMO

The composites of heteropolyacids (H3PW12, H3PMo12) incorporated into amine-functionalized silica materials were used for the first time as heterogeneous catalysts in the valorization of glycerol (a major waste from the biodiesel industry) through acetalization reaction with acetone. The polyoxotungstate catalyst H3PW12@AptesSBA-15 exhibited higher catalytic efficiency than the phosphomolybdate, achieving 97% conversion and 97% of solketal selectivity, after 60 min at 25 °C, or 91% glycerol conversion and the same selectivity, after 5 min, performing the reaction at 60 °C. A correlation between catalytic performance and catalyst acidity is presented here. Furthermore, the stability of the solid catalyst was investigated and discussed.

4.
Polymers (Basel) ; 16(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38611226

RESUMO

The improvement of sustainable chemical processes plays a pivotal role in safe environmental and societal development, for example, by reducing the use of hazardous substances, preventing chemical waste, and improving the efficiency of chemical reactions to obtain added-value compounds. In this context, the porous coordination polymer MOF-808 (MOF, metal-organic framework) was prepared by a straightforward method in water, at room temperature, and was unequivocally characterized by powder X-ray diffraction, vibrational spectroscopy, thermogravimetric analysis, and scanning electron microscopy. MOF-808 material was applied for the first time as catalysts in ring-opening aminolysis reactions of epoxides. It demonstrated high activity and selectivity for reactions of styrene oxide and cyclohexene oxide with aniline, using a very low amount of an eco-sustainable solvent (0.5 mL of EtOH), at 70 °C. Moreover, MOF-808 demonstrated high stability in the catalytic reaction conditions applied, and a notable reuse capacity of up to 20 consecutive reaction cycles, without significant variation in its catalytic performance. In fact, this Zr-based porous coordination polymer prepared by environment-friendly conditions proved to be a novel efficient heterogeneous catalyst, promoting the ring-opening reaction of epoxides under more sustainable conditions, and using a very low amount of catalyst.

5.
Front Microbiol ; 15: 1388895, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903785

RESUMO

Given the increasing pressure on water bodies, it is imperative to explore sustainable methodologies for wastewater treatment and reuse. The simultaneous presence of multiples contaminants in complex wastewater, such as the liquid effluents from biogas plants, can compromise biological treatment effectiveness for reclaiming water. Vertical subsurface flow constructed wetlands were established as low-cost decentralized wastewater treatment technologies to treat the liquid fraction of digestate from municipal organic waste with metals, antibiotics, and antibiotic resistance genes, to allow its reuse in irrigation. Twelve lab-scale planted constructed wetlands were assembled with gravel, light expanded clay aggregate and sand, testing four different treating conditions (liquid digestate spiked with oxytetracycline, sulfadiazine, or ofloxacin, at 100 µg/ L, or without dosing) during 3 months. Physicochemical parameters (pH, chemical oxygen demand (COD), nutrients, metals, and antibiotics), the microbial communities dynamics (through 16S high-throughput sequencing) and antibiotic resistance genes removal (qPCR) were monitored in influents and effluents. Systems removed 85.8%-96.9% of organic matter (as COD), over 98.1% of ammonium and phosphate ions, and 69.3%-99.4% of nitrate and nitrite ions, with no significant differences between the presence or absence of antibiotics. Removal of Fe, Mn, Zn, Cu, Pb and Cr exceeded 82% in all treatment cycles. The treatment also removed oxytetracycline, sulfadiazine and ofloxacin over 99%, and decreased intl1, tetA, tetW, sul1 and qnrS gene copies. Nonetheless, after 3 months of ofloxacin dosing, qnrS gene started being detected. Removal processes relied on high HRT (14 days) and various mechanisms including sorption, biodegradation, and precipitation. Microbial community diversity in liquid digestate changed significantly after treatment in constructed wetlands with a decrease in the initial Firmicutes dominance, but with no clear effect of antibiotics on the microbial community structure. Removals above 85% and 94% were observed for Streptococcus and Clostridium, respectively. Results suggest that vertical subsurface flow constructed wetlands were a suitable technology for treating the liquid digestate to reuse it in irrigation agricultural systems, contributing to the circular bioeconomy concept. However, a more profound understanding of effective wastewater treatment strategies is needed to avoid antibiotic resistance genes dissemination.

6.
Environ Sci Technol ; 46(4): 2406-12, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22296411

RESUMO

In the last years, a rising trend of pollen allergies in urban areas has been attributed to atmospheric pollution. In this work, we investigated the effects of SO(2) and NO(2) on the protein content, allergenicity, and germination rate of Acer negundo pollen. A novel environmental chamber was assembled to exposure pollen samples with SO(2) or NO(2) at two different levels: just below and two times the atmospheric hour-limit value acceptable for human health protection in Europe. Results showed that protein content was lower in SO(2)-exposed pollen samples and slightly higher in NO(2)-exposed pollen compared to the control sample. No different polypeptide profiles were revealed by SDS-PAGE between exposed and nonexposed pollen, but the immunodetection assays indicated higher IgE recognition by all sera of sensitized patients to Acer negundo pollen extracts in all exposed samples in comparison to the nonexposed samples. A decrease in the germination rate of exposed in contrast to nonexposed pollen was verified, which was more pronounced for NO(2)-exposed samples. Our results indicated that in urban areas, concentrations of SO(2) and NO(2) below the limits established for human protection can indirectly aggravate pollen allergy on predisposed individuals and affect plant reproduction.


Assuntos
Acer , Poluentes Atmosféricos/toxicidade , Dióxido de Nitrogênio/toxicidade , Pólen/efeitos dos fármacos , Dióxido de Enxofre/toxicidade , Acer/fisiologia , Alérgenos/fisiologia , Germinação/efeitos dos fármacos , Humanos , Hipersensibilidade Imediata/sangue , Hipersensibilidade Imediata/imunologia , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Proteínas de Plantas/metabolismo , Pólen/crescimento & desenvolvimento , Pólen/imunologia
7.
Sci Total Environ ; 655: 796-806, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30577142

RESUMO

The present work aimed to explore the potential of autochthonous microorganisms from an urban estuary and from activated sludge of an associated wastewater treatment plant (WWTP), for biodegradation of an antidepressant drug, paroxetine, and on a cholesterol-lowering agent, bezafibrate. These compounds were chosen as representatives of extensively used pharmaceuticals. Autochthonous microorganisms from the indicated sources were exposed to the target pharmaceuticals (1 mg/L) in co-metabolism with sodium acetate (500 mg/L) along a two-weeks period, for a total of 7 two-weeks periods (here referred as cycles). Exposures were carried out in batch mode, under different incubation conditions (agitation vs. static). Removal of pharmaceuticals was monitored at the end of each cycle, by analysing the culture medium. For paroxetine, fluoride ion release was also followed as an indicator of defluorination of the molecule. The structure of the bacterial communities was analysed by ARISA (Automated rRNA Intergenic Spacer Analysis), at the beginning of the experiment and at the end of the first and the last cycles to identify substantial changes associated with the time of exposure, the incubation conditions and the presence and type of pharmaceuticals. Incubation conditions affected not only the bacterial community structure, but also the biodegradation efficiency. At the beginning of the experiment, removal of target pharmaceuticals was found to be lower under agitation than under static conditions, but at the end of the experiment, results showed high removal of the pharmaceuticals from the culture medium (>97%) under both conditions, mainly by microbiological processes. For paroxetine, adsorption and abiotic processes also had an important influence on its removal, but defluorination only occurred in the presence of microorganisms. These results highlight that autochthonous microorganisms from estuarine sediments and WWTP sludge have high ability to remove the selected pharmaceuticals with relevant implications for the development of new bioremediation tools for environmental restoration.


Assuntos
Estuários , Sedimentos Geológicos/microbiologia , Preparações Farmacêuticas/metabolismo , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos , Adsorção , Bezafibrato/isolamento & purificação , Bezafibrato/metabolismo , Biodegradação Ambiental , Microbiota/genética , Paroxetina/isolamento & purificação , Paroxetina/metabolismo , Preparações Farmacêuticas/isolamento & purificação , Fatores de Tempo , Poluentes Químicos da Água/isolamento & purificação
8.
Mar Environ Res ; 132: 68-78, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29122290

RESUMO

Autochthonous bioaugmentation for metal phytoremediation is still little explored, particularly its application to estuarine salt marshes, but results obtained so far are promising. Nevertheless, understanding the behaviour of the microbial communities in the process of bioaugmentation and their role in improving metal phytoremediation is very important to fully validate the application of this biological technology. This study aimed to characterize the bacterial community dynamic associated with the application of autochthonous bioaugmentation in an experimentation which showed that Phragmites australis rhizosphere microorganisms could increase this salt marsh plant potential to phytoremediate Cu contaminated sediments. Bacterial communities present in the autochthonous microbial consortium resistant to Cu added to the medium and in the sediment at the beginning and at the end of the experiment were characterized by ARISA. Complementarily, the consortium and the sediment used for its production were characterized by next generation sequencing using the pyrosequencing platform 454. The microbial consortium resistant to Cu obtained from non-vegetated sediment was dominated by the genus Lactococcus (46%), Raoultella (25%), Bacillus (12%) and Acinetobacter (11%), whereas the one obtained form rhizosediment was dominated by the genus Gluconacetobacter (77%), Bacillus (17%) and Dyella (3%). Results clearly showed that, after two months of experiment, Cu caused a shift in the bacterial community structure of sediments, an effect that was observed either with or without addition of the metal resistant microbial consortium. Therefore, bioaugmentation application improved the process of phytoremediation (metal translocation by the plant was increased) without inducing long term changes in the bacterial community structure of the sediments. So, phytoremediation combined with autochthonous bioaugmentation can be a suitable technology for the recovery of estuarine areas, contributing for an efficient risk management strategy of these coastal zones.


Assuntos
Bactérias/crescimento & desenvolvimento , Biodegradação Ambiental , Cobre/análise , Microbiologia da Água , Poluentes Químicos da Água/análise , Bactérias/classificação , Cobre/metabolismo , Estuários , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Consórcios Microbianos , Poaceae , Poluentes Químicos da Água/metabolismo , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA