Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 169(4): 636-650.e14, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28434617

RESUMO

Tissue stem cells contribute to tissue regeneration and wound repair through cellular programs that can be hijacked by cancer cells. Here, we investigate such a phenomenon in skin, where during homeostasis, stem cells of the epidermis and hair follicle fuel their respective tissues. We find that breakdown of stem cell lineage confinement-granting privileges associated with both fates-is not only hallmark but also functional in cancer development. We show that lineage plasticity is critical in wound repair, where it operates transiently to redirect fates. Investigating mechanism, we discover that irrespective of cellular origin, lineage infidelity occurs in wounding when stress-responsive enhancers become activated and override homeostatic enhancers that govern lineage specificity. In cancer, stress-responsive transcription factor levels rise, causing lineage commanders to reach excess. When lineage and stress factors collaborate, they activate oncogenic enhancers that distinguish cancers from wounds.


Assuntos
Carcinoma de Células Escamosas/patologia , Linhagem da Célula , Células Epidérmicas , Folículo Piloso/citologia , Neoplasias Cutâneas/patologia , Pele/citologia , Células-Tronco/metabolismo , Animais , Linhagem Celular Tumoral , Cromatina/metabolismo , Epiderme/metabolismo , Humanos , Camundongos , Camundongos Nus , Transplante de Neoplasias , Neoplasias Cutâneas/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma , Transplante Heterólogo , Cicatrização
2.
Genes Dev ; 34(23-24): 1713-1734, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33184221

RESUMO

Through recurrent bouts synchronous with the hair cycle, quiescent melanocyte stem cells (McSCs) become activated to generate proliferative progeny that differentiate into pigment-producing melanocytes. The signaling factors orchestrating these events remain incompletely understood. Here, we use single-cell RNA sequencing with comparative gene expression analysis to elucidate the transcriptional dynamics of McSCs through quiescence, activation, and melanocyte maturation. Unearthing converging signs of increased WNT and BMP signaling along this progression, we endeavored to understand how these pathways are integrated. Employing conditional lineage-specific genetic ablation studies in mice, we found that loss of BMP signaling in the lineage leads to hair graying due to a block in melanocyte maturation. We show that interestingly, BMP signaling functions downstream from activated McSCs and maintains WNT effector, transcription factor LEF1. Employing pseudotime analysis, genetics, and chromatin landscaping, we show that following WNT-mediated activation of McSCs, BMP and WNT pathways collaborate to trigger the commitment of proliferative progeny by fueling LEF1- and MITF-dependent differentiation. Our findings shed light upon the signaling interplay and timing of cues that orchestrate melanocyte lineage progression in the hair follicle and underscore a key role for BMP signaling in driving complete differentiation.


Assuntos
Proteínas Morfogenéticas Ósseas/fisiologia , Diferenciação Celular/genética , Melanócitos/citologia , Transdução de Sinais/genética , Células-Tronco/citologia , Animais , Linhagem da Célula/genética , Perfilação da Expressão Gênica , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Camundongos , Fator de Transcrição Associado à Microftalmia/metabolismo , Análise de Célula Única
3.
Nature ; 569(7757): 497-502, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31092920

RESUMO

Cell competition-the sensing and elimination of less fit 'loser' cells by neighbouring 'winner' cells-was first described in Drosophila. Although cell competition has been proposed as a selection mechanism to optimize tissue and organ development, its evolutionary generality remains unclear. Here, by using live imaging, lineage tracing, single-cell transcriptomics and genetics, we identify two cell competition mechanisms that sequentially shape and maintain the architecture of stratified tissue during skin development in mice. In the single-layered epithelium of the early embryonic epidermis, winner progenitors kill and subsequently clear neighbouring loser cells by engulfment. Later, as the tissue begins to stratify, the basal layer instead expels losers through upward flux of differentiating progeny. This cell competition switch is physiologically relevant: when it is perturbed, so too is barrier formation. Our findings show that cell competition is a selective force that optimizes vertebrate tissue function, and illuminate how a tissue dynamically adjusts cell competition strategies to preserve fitness as its architectural complexity increases during morphogenesis.


Assuntos
Comunicação Celular , Células Epidérmicas/citologia , Epiderme/embriologia , Morfogênese , Animais , Apoptose , Células Clonais/citologia , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Células Epidérmicas/metabolismo , Feminino , Masculino , Camundongos , Fagocitose , RNA-Seq , Análise de Célula Única
4.
Nature ; 560(7716): E2, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29973713

RESUMO

In Fig. 2g of this Article, a panel was inadvertently duplicated. The 'D30 IMQ' image was a duplicate of the 'D6 Ctrl' image. Fig. 2g has been corrected online to show the correct 'D30 IMQ' image (showing skin inflammation induced by the NALP3 agonist imiquimod, IMQ). The Supplementary Information to this Amendment contains the old, incorrect Fig. 2 for transparency.

5.
Nature ; 550(7677): 475-480, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29045388

RESUMO

The skin barrier is the body's first line of defence against environmental assaults, and is maintained by epithelial stem cells (EpSCs). Despite the vulnerability of EpSCs to inflammatory pressures, neither the primary response to inflammation nor its enduring consequences are well understood. Here we report a prolonged memory to acute inflammation that enables mouse EpSCs to hasten barrier restoration after subsequent tissue damage. This functional adaptation does not require skin-resident macrophages or T cells. Instead, EpSCs maintain chromosomal accessibility at key stress response genes that are activated by the primary stimulus. Upon a secondary challenge, genes governed by these domains are transcribed rapidly. Fuelling this memory is Aim2, which encodes an activator of the inflammasome. The absence of AIM2 or its downstream effectors, caspase-1 and interleukin-1ß, erases the ability of EpSCs to recollect inflammation. Although EpSCs benefit from inflammatory tuning by heightening their responsiveness to subsequent stressors, this enhanced sensitivity probably increases their susceptibility to autoimmune and hyperproliferative disorders, including cancer.


Assuntos
Células Epiteliais/citologia , Inflamação/genética , Inflamação/patologia , Pele/citologia , Pele/patologia , Células-Tronco/citologia , Cicatrização/fisiologia , Aminoquinolinas/farmacologia , Animais , Doenças Autoimunes/patologia , Caspase 1/metabolismo , Linhagem da Célula , Cromatina/genética , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/genética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Imiquimode , Inflamassomos/metabolismo , Inflamação/induzido quimicamente , Inflamação/imunologia , Interleucina-1beta/metabolismo , Macrófagos , Camundongos , Neoplasias/patologia , Regeneração/efeitos dos fármacos , Regeneração/genética , Pele/efeitos dos fármacos , Pele/imunologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Estresse Fisiológico/genética , Linfócitos T , Cicatrização/efeitos dos fármacos , Cicatrização/genética
6.
Nature ; 541(7638): 494-499, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28077873

RESUMO

We are just beginning to understand how translational control affects tumour initiation and malignancy. Here we use an epidermis-specific, in vivo ribosome profiling strategy to investigate the translational landscape during the transition from normal homeostasis to malignancy. Using a mouse model of inducible SOX2, which is broadly expressed in oncogenic RAS-associated cancers, we show that despite widespread reductions in translation and protein synthesis, certain oncogenic mRNAs are spared. During tumour initiation, the translational apparatus is redirected towards unconventional upstream initiation sites, enhancing the translational efficiency of oncogenic mRNAs. An in vivo RNA interference screen of translational regulators revealed that depletion of conventional eIF2 complexes has adverse effects on normal but not oncogenic growth. Conversely, the alternative initiation factor eIF2A is essential for cancer progression, during which it mediates initiation at these upstream sites, differentially skewing translation and protein expression. Our findings unveil a role for the translation of 5' untranslated regions in cancer, and expose new targets for therapeutic intervention.


Assuntos
Regiões 5' não Traduzidas/genética , Carcinogênese/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Fases de Leitura Aberta/genética , Iniciação Traducional da Cadeia Peptídica/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Animais , Carcinogênese/patologia , Carcinoma de Células Escamosas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Epiderme/embriologia , Epiderme/metabolismo , Epiderme/patologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Feminino , Humanos , Queratinócitos , Masculino , Camundongos , Oncogenes/genética , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Prognóstico , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Neoplasias Cutâneas/metabolismo
7.
Proc Natl Acad Sci U S A ; 117(10): 5339-5350, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32094197

RESUMO

Aging manifests with architectural alteration and functional decline of multiple organs throughout an organism. In mammals, aged skin is accompanied by a marked reduction in hair cycling and appearance of bald patches, leading researchers to propose that hair follicle stem cells (HFSCs) are either lost, differentiate, or change to an epidermal fate during aging. Here, we employed single-cell RNA-sequencing to interrogate aging-related changes in the HFSCs. Surprisingly, although numbers declined, aging HFSCs were present, maintained their identity, and showed no overt signs of shifting to an epidermal fate. However, they did exhibit prevalent transcriptional changes particularly in extracellular matrix genes, and this was accompanied by profound structural perturbations in the aging SC niche. Moreover, marked age-related changes occurred in many nonepithelial cell types, including resident immune cells, sensory neurons, and arrector pili muscles. Each of these SC niche components has been shown to influence HF regeneration. When we performed skin injuries that are known to mobilize young HFSCs to exit their niche and regenerate HFs, we discovered that aged skin is defective at doing so. Interestingly, however, in transplantation assays in vivo, aged HFSCs regenerated HFs when supported with young dermis, while young HFSCs failed to regenerate HFs when combined with aged dermis. Together, our findings highlight the importance of SC:niche interactions and favor a model where youthfulness of the niche microenvironment plays a dominant role in dictating the properties of its SCs and tissue health and fitness.


Assuntos
Folículo Piloso/fisiologia , Regeneração/fisiologia , Envelhecimento da Pele/fisiologia , Nicho de Células-Tronco/fisiologia , Células-Tronco/fisiologia , Animais , Derme/fisiologia , Células Epidérmicas/fisiologia , Epiderme/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculos/fisiologia , Reepitelização , Regeneração/genética , Células Receptoras Sensoriais/fisiologia , Envelhecimento da Pele/genética , Nicho de Células-Tronco/genética , Transplante de Células-Tronco , Transcriptoma , Cicatrização/genética , Cicatrização/fisiologia
8.
J Appl Biomech ; 37(1): 59-65, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33285513

RESUMO

The factors that contribute to the difficulties persons with Parkinson Disease (PwPD) have when negotiating transitions in walking surfaces are not completely known. The authors investigated if PwPD adjusted their step characteristics when negotiating a familiar outdoor surface transition between synthetic concrete and synthetic turf. Force plate and motion capture data were collected for 10 participants with mild to moderate Parkinson disease and 5 healthy older control participants ambulating bidirectionally across the transition between synthetic concrete and synthetic turf. Between groups, PwPD had a significantly higher minimum toe clearance (P = .007) for both directions of travel compared with the healthy control group. Within groups, PwPD significantly increased their hip (P < .001) and ankle (P = .016) range of motion walking from concrete to turf, while the healthy control participants significantly increased their minimum toe clearance (P = .013), margin of stability (P = .019), hip (P < .001) and ankle (P = .038) range of motion, and step length (P < .001). Walking from turf to concrete, both the Parkinson disease group (P = .014) and the healthy control group (P < .001) increased their knee range of motion. Both groups adjusted their step characteristics when negotiating known surface transitions, indicating that surface transitions result in step changes regardless of health status. However, PwPD exhibited overcompensations, particularly in their minimum toe clearance.


Assuntos
Marcha , Doença de Parkinson/fisiopatologia , Amplitude de Movimento Articular , Idoso , Tornozelo , Estudos de Casos e Controles , Feminino , Quadril , Humanos , Joelho , Masculino , Pessoa de Meia-Idade
9.
Ann Neurol ; 77(5): 753-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25652200

RESUMO

OBJECTIVE: The prevalence of mitochondrial disease has proven difficult to establish, predominantly as a result of clinical and genetic heterogeneity. The phenotypic spectrum of mitochondrial disease has expanded significantly since the original reports that associated classic clinical syndromes with mitochondrial DNA (mtDNA) rearrangements and point mutations. The revolution in genetic technologies has allowed interrogation of the nuclear genome in a manner that has dramatically improved the diagnosis of mitochondrial disorders. We comprehensively assessed the prevalence of all forms of adult mitochondrial disease to include pathogenic mutations in both nuclear and mtDNA. METHODS: Adults with suspected mitochondrial disease in the North East of England were referred to a single neurology center from 1990 to 2014. For the midyear period of 2011, we evaluated the minimum prevalence of symptomatic nuclear DNA mutations and symptomatic and asymptomatic mtDNA mutations causing mitochondrial diseases. RESULTS: The minimum prevalence rate for mtDNA mutations was 1 in 5,000 (20 per 100,000), comparable with our previously published prevalence rates. In this population, nuclear mutations were responsible for clinically overt adult mitochondrial disease in 2.9 per 100,000 adults. INTERPRETATION: Combined, our data confirm that the total prevalence of adult mitochondrial disease, including pathogenic mutations of both the mitochondrial and nuclear genomes (≈1 in 4,300), is among the commonest adult forms of inherited neurological disorders. These figures hold important implications for the evaluation of interventions, provision of evidence-based health policies, and planning of future services.


Assuntos
Núcleo Celular/genética , DNA Mitocondrial/genética , Doenças Mitocondriais/epidemiologia , Doenças Mitocondriais/genética , Mutação/genética , Adulto , Estudos Transversais , Inglaterra/epidemiologia , Humanos , Doenças Mitocondriais/diagnóstico , Prevalência , Adulto Jovem
10.
J Biomech ; 168: 112075, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631186

RESUMO

Whole-body angular momentum (WBAM) represents the cancellations of angular momenta that are produced during a reciprocal gait pattern. WBAM is sensitive to small changes and is used to compare dynamic gait patterns under different walking conditions. Study designs and the normalization techniques used to define WBAM vary and make comparisons between studies difficult. To address this problem, WBAM about each anatomical axis of rotation from a healthy control population during normal gait were investigated within four metrics: 1) range of WBAM, 2) integrated WBAM, 3) statistical parametric mapping (SPM), and 4) principal component analysis (PCA). These data were studied as a function of walking speed and normalization. Normalization techniques included: 1) no normalization, 2) normalization by height, body mass and walking speed, and 3) normalization by height, body mass and a scalar number, gravity×height, that is independent of walking velocity. Significant results were obtained as a function of walking speed regardless of normalization technique. However, the interpretation of significance within each metric was dependent on the normalization technique. Method 3 was the most robust technique as the differences were not altered from the expected relationships within the raw data. Method 2 actually inverted the expected relationship in WBAM amplitude as a function of walking speed, which skewed the results and their interpretation. Overall, SPM and PCA statistical methods provided better insights into differences that may be important. However, depending on the normalization technique used, caution is advised when interpreting significant findings when comparing participants with disparate walking speeds.


Assuntos
Marcha , Velocidade de Caminhada , Humanos , Velocidade de Caminhada/fisiologia , Masculino , Marcha/fisiologia , Feminino , Adulto , Caminhada/fisiologia , Fenômenos Biomecânicos , Análise de Componente Principal , Adulto Jovem
11.
Gait Posture ; 112: 59-66, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38744022

RESUMO

BACKGROUND: Transhumeral (TH) limb loss leads to loss of body mass and reduced shoulder range of motion. Despite most owning a prosthesis, prosthesis abandonment is common. The consequence of TH limb loss and prosthesis use and disuse during gait may be compensation in the upper body, contributing to back pain or injury. Understanding the impact of not wearing a TH prosthesis on upper body asymmetries and spatial-temporal aspects of gait will inform how TH prosthesis use and disuse affects the body. RESEARCH QUESTION: Does TH limb loss alter upper body asymmetries and spatial-temporal parameters during gait when wearing and not wearing a prosthesis compared to able-bodied controls? METHODS: Eight male TH limb loss participants and eight male control participants completed three gait trials at self-selected speeds. The TH limb loss group performed trials with and without their prosthesis. Arm swing, trunk angular displacement, trunk-pelvis moment, and spatial-temporal aspects were compared using non-parametric statistical analyses. RESULTS: Both TH walking conditions showed greater arm swing in the intact limb compared to the residual (p≤0.001), resulting in increased asymmetry compared to the control group (p≤0.001). Without the prosthesis, there was less trunk flexion and lateral flexion compared to the control group (p≤0.001). Maximum moments between the trunk and pelvis were higher in the TH group than the control group (p≤0.05). Spatial-temporal parameters of gait did not differ between the control group and either TH limb loss condition. SIGNIFICANCE: Prosthesis use affects upper body kinematics and kinetics, but does not significantly impact spatial-temporal aspects of gait, suggesting these are compensatory actions. Wearing a prosthesis helps achieve more normative upper body kinematics and kinetics than not wearing a prosthesis, which may help limit back pain. These findings emphasize the importance of encouraging at least passive use of prostheses for individuals with TH limb loss.


Assuntos
Membros Artificiais , Marcha , Humanos , Masculino , Fenômenos Biomecânicos , Marcha/fisiologia , Adulto , Amplitude de Movimento Articular/fisiologia , Úmero/fisiologia , Pessoa de Meia-Idade , Amputados/reabilitação , Extremidade Superior/fisiologia , Estudos de Casos e Controles
12.
Prosthet Orthot Int ; 47(3): 272-280, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36723391

RESUMO

BACKGROUND: This study investigated whether the time to amputation (TtoA) after a work-related injury had a significant effect on the medical costs accrued in the first year after injury. DATA SOURCE: Six thousand nine hundred fifty-three person-level workers' compensation claims data from the state of California, USA, from 2007 to 2018. METHODS: Multiple quantile regression was used to assess the impact of TtoA on medical costs accrued during the first 12 months after injury. Three time intervals for TtoA were investigated: immediate (0, 1 days), short-delay (2-31 days), and long-delay (>31 days). RESULTS: The median (interquartile range) medical dollars paid per claim during the first 12 months for the study population was $12,414 ($6,324-$29,347). Amputations that occurred during the short-delay time interval resulted in significant ( p < 0.001) median (95% CI) savings of -$3,196 (-$3,968 to -$2,424) compared with the immediate amputation group. The long-delay time interval resulted in significantly ( p < 0.001) increased median (95% CI) spending of $5,613 ($4,675-$6,551) compared with the immediate amputation group. Covariates that significantly increased costs were medical intensity, medical complexity, use of a prosthesis, and if the injured worker pursued legal action in addition to a workers' compensation claim. CONCLUSIONS: This study presents the impact of TtoA on medical spending in the first year after a work-related injury that results in an amputation. Amputations that occurred within the first month after an injury resulted in reduced medical spending compared with immediate amputations, and amputations that occurred after the first month resulted in increased medical spending.


Assuntos
Traumatismos Ocupacionais , Indenização aos Trabalhadores , Humanos , California , Amputação Cirúrgica
13.
Nat Cell Biol ; 25(8): 1185-1195, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37488435

RESUMO

During development, progenitors simultaneously activate one lineage while silencing another, a feature highly regulated in adult stem cells but derailed in cancers. Equipped to bind cognate motifs in closed chromatin, pioneer factors operate at these crossroads, but how they perform fate switching remains elusive. Here we tackle this question with SOX9, a master regulator that diverts embryonic epidermal stem cells (EpdSCs) into becoming hair follicle stem cells. By engineering mice to re-activate SOX9 in adult EpdSCs, we trigger fate switching. Combining epigenetic, proteomic and functional analyses, we interrogate the ensuing chromatin and transcriptional dynamics, slowed temporally by the mature EpdSC niche microenvironment. We show that as SOX9 binds and opens key hair follicle enhancers de novo in EpdSCs, it simultaneously recruits co-factors away from epidermal enhancers, which are silenced. Unhinged from its normal regulation, sustained SOX9 subsequently activates oncogenic transcriptional regulators that chart the path to cancers typified by constitutive SOX9 expression.


Assuntos
Células-Tronco Adultas , Proteômica , Animais , Camundongos , Células-Tronco Adultas/metabolismo , Diferenciação Celular , Cromatina/genética , Epigênese Genética , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo
14.
Heliyon ; 8(11): e11223, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36353172

RESUMO

Background: A defining clinical characteristics of Parkinson disease is reduced upper-extremity movements. Irregular terrain, the presence of a cross slope, and dual-task conditions have been found to alter the lower-limb gait characteristics of persons with Parkinson disease but there is little information how different environmental and cognitive conditions impact upper-limb kinematics as well as interlimb movement correlation. Research question: Do environmental conditions, such as irregular terrain and the presence of cross slope, as well as dual-task condition impact the upper-extremity kinematics and interlimb movement correlation of persons with Parkinson disease compared to healthy, age-matched controls? Methods: Three-dimensional whole-body gait data were collected for nine participants with mild-to-moderate Parkinson disease and nine healthy age-matched control participants. All participants ambulated on a regular terrain, irregular terrain, with and without cross slope, and under dual and single-task conditions. The primary outcomes were arm swing magnitude, arm swing asymmetry, and normalized cross-correlation between the ipsilateral arms and contralateral legs, which characterized movement correlation. Results: For all conditions, persons with Parkinson disease exhibited reduced arm swing magnitude and greater arm swing asymmetry compared to the healthy controls. All participants increased their arm swing magnitude on the irregular surface and under the dual-task condition. In the healthy group, the arm swing asymmetry was invariant to terrain but declined under the dual-task condition while the persons with Parkinson disease exhibited increased asymmetry on the cross slope, on the irregular terrain, and under the dual-task condition. Interlimb movement correlation decreased on the irregular terrain for the persons with Parkinson disease while the healthy group exhibited decreased interlimb movement correlation on the cross slope as well as under the dual-task condition. Significance: Persons with Parkinson disease were able to increase their arm swing magnitude when their balance was challenged and the most significant threat to their safety as defined by the greatest reduction in the interlimb movement correlation was the irregular terrain.

15.
Clin Biomech (Bristol, Avon) ; 99: 105766, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36156430

RESUMO

BACKGROUND: Persons with Parkinson's disease have impaired motor control that increases their chance of falling when walking, especially on difficult terrains. This study investigated how persons with Parkinson's disease regulate their dynamic balance on a regular and an irregular surface. METHODS: Nine participants with Parkinson's disease and nine healthy, age-matched control participants ambulated on both a regular and an irregular surface. Whole-body and segmental angular momenta were calculated using three-dimensional motion capture data. Major modes of variability between health groups on the two surfaces were investigated using principal component analysis, while differences within each health group between surfaces was investigated using statistical parametric mapping t-tests. FINDINGS: Between groups, the Parkinson participants had greater sagittal, frontal, and transverse whole-body angular momentum on both surfaces, primarily following heel-strike, and the magnitude difference on the irregular surface was greater than on the regular surface. The greatest between group segmental differences on the irregular compared to the regular surface were the legs in the sagittal plane and the head/trunk/pelvis in the transverse plane, with the Parkinson group having greater magnitudes. The within-group comparison found the Parkinson participants had poorer regulation of whole-body angular momentum in the sagittal plane, while the healthy participants showed no consistent differences between surfaces. INTERPRETATION: On an irregular surface, persons with Parkinson's disease exhibit poor control of dynamic balance in the frontal and sagittal planes. These results emphasize the need for weight transfer techniques and training in both the sagittal and frontal planes to maximize balance and reduce fall risk.


Assuntos
Doença de Parkinson , Fenômenos Biomecânicos/fisiologia , Marcha/fisiologia , Humanos , Movimento (Física) , Equilíbrio Postural/fisiologia , Caminhada/fisiologia
16.
Methods Mol Biol ; 2226: 285-302, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33326110

RESUMO

Ewing sarcoma is a highly malignant tumor characterized by a chromosomal translocation that modifies the activity of an ETS family transcription factor. The most prevalent translocation product, EWSR1-FLI1, exploits a permissive and unique chromatin environment of stem cells, and transforms them into an oncogenic state through alterations to gene expression and gene regulatory programs. Though the transformation ability of, and subsequent reliance on EWSR1-FLI1 had been previously described, the advent of genome-wide sequencing technologies allowed for the specific identification of genomic loci and genes targeted by EWSR1-FLI1. Furthermore, the characterization of the chromatin environment in these, and other, cell types could not have been accomplished without the computational and statistical methods that enable large-scale data analysis. Here, we outline in detail the tools and steps needed to analyze genome-wide transcription factor binding and histone modification data (chromatin immunoprecipitation, ChIP-seq), as well as chromatin accessibility data (assay for transposase-accessible chromatin, ATAC-seq) from Ewing sarcoma cells. Our protocol includes a compilation of data quality control metrics, trimming of adapter sequences, reference genome alignment, identification of enriched sites ("peaks") and motifs, as well as annotation and visualization, using real-world data. These steps should provide a platform on which molecular biologists can build their own analytical pipelines to aid in data processing, analysis, and interpretation.


Assuntos
Neoplasias Ósseas/genética , Epigênese Genética , Epigenômica , Regulação Neoplásica da Expressão Gênica , Sarcoma de Ewing/genética , Biomarcadores Tumorais , Sequenciamento de Cromatina por Imunoprecipitação/métodos , Biologia Computacional/métodos , Bases de Dados Genéticas , Epigenômica/métodos , Humanos , Software , Navegador
17.
J Biomech ; 128: 110732, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34509052

RESUMO

Concerns surrounding concussions from impacts to the head necessitate research to generate new knowledge about ways to prevent them and reduce risk. In this paper, we report the relative temporal characteristics of the head resulting from neck muscle co-contraction and postural changes following a sudden force applied to the head in four different directions. In the two "prepared" conditions (i.e., co-contraction and postural), participants experienced impulsive forces to the head after hearing a warning. The warning given for the postural condition informed both the direction and timing of the impulsive force. Participants responded to the postural warning by altering their head posture, whereas in the co-contraction warning, the force direction was unknown to them, and they were asked to isometrically co-contract their neck muscles after the warning. Peak angular velocity reduced by 29% in sagittal extension, 18% in sagittal flexion, and 23% in coronal lateral flexion in prepared vs. unwarned conditions. Peak linear acceleration was attenuated by 15% in sagittal extension, 8% in sagittal flexion, and 18% in coronal lateral flexion in prepared vs. unwarned conditions. Changes in peak angular acceleration were not uniform. We also measured a significant delay in the peak angular velocity (22 vs. 44.8 ms) and peak angular acceleration (7 vs. 20 ms) after peak linear acceleration in prepared compared to unwarned conditions. An increase in muscle activation significantly reduced the peak angular velocity and linear acceleration. Gross head movement was significantly decreased with preparation. These findings suggest that a warning prior to impact can reduce head kinematics associated with injury.


Assuntos
Lesões do Pescoço , Músculos do Pescoço , Aceleração , Fenômenos Biomecânicos , Cabeça , Humanos , Pescoço
18.
Ann Biomed Eng ; 49(9): 2260-2272, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33768412

RESUMO

Mild traumatic brain injury (mTBI) and whiplash-associated disorder are the most common head and neck injuries and result from a sudden head or body acceleration. The head and neck injury potential is correlated with the awareness, level of muscle activation, and posture changes at the time of the perturbation. Environmental acoustic stimuli or a warning system can influence muscle activation and posture during a head perturbation. In this study, different acoustic stimuli, including Non-Directional, Directional, and Startle, were provided 1000 ms before a head impact, and the amplitude and timing of cervical muscle electromyographic (EMG) data were characterized based on the type of warning. The startle warning resulted in 49% faster and 80% greater EMG amplitude compared to the Directional and Non-Directional warnings after warning and before the impact. The post-impact peak EMG amplitudes in Unwarned trials were lower by 18 and 21% in the retraction and rebound muscle groups, respectively, compared to any of the warned conditions. When there was no warning before the impact, the retraction and rebound muscle groups also reached their maximum activation 38 and 54 ms sooner, respectively, compared to the warned trials. Based on these results, the intensity and complexity of information that a warning sound carries change the muscle response before and after a head impact and has implications for injury potential.


Assuntos
Estimulação Acústica , Movimentos da Cabeça/fisiologia , Músculos do Pescoço/fisiologia , Reflexo de Sobressalto/fisiologia , Adulto , Eletromiografia , Humanos , Masculino , Postura/fisiologia , Adulto Jovem
19.
Health Sci Rep ; 4(3): e319, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34250271

RESUMO

BACKGROUND: Detailed information regarding workers who experience an amputation in the workplace over the last decade is limited. To better understand the financial and functional impact of a work-related amputation, this study quantifies the incidence of work-related amputations in the California workforce from 2007 to 2018 as well as the relationship between medical costs and lost workdays as a function of amputation level. METHODS: Workers' compensation claims data from California spanning the years 2007 to 2018 were evaluated to describe trends in amputation incidence (N = 16 931). Quartile values for medical costs, indemnity costs, and lost workdays were reported as a function of amputation level. Correlations were performed between medical costs and lost workdays to examine their relationship. RESULTS: The average incidence from 2007 to 2018 was 8.9 (95% CI 8.5, 9.4) amputations per 100 000 workers. There was a significant spike in amputations in 2008. Partial-hand amputations were the most common with 73.3 (95% CI 69.2, 77.7) cases per 1 000 000 workers, and the industry with the highest incidence was construction with 26.0 (95% CI 22.4, 30.0) cases per 100 000 workers. Overall, medical costs were moderately correlated with lost workdays (Spearman's rho = 0.51), and that level of correlation remained relatively consistent across all levels of amputation (Spearman's rho = 0.48-0.62). CONCLUSIONS: Amputations represent high medical costs and number of lost workdays. Considering the type of amputation and the industry the injury occurred in is important in order to work toward returning this population to work. Our results present the status of amputations in the California workplace and establish a basis for using medical costs to infer lost work productivity for this population.

20.
Ann Biomed Eng ; 49(12): 3438-3451, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34853920

RESUMO

Sex, head and neck posture, and cervical muscle preparation are contributing factors in the severity of head and neck injuries. However, it is unknown how these factors modulate the head kinematics. In this study, twenty-four (16 male and 8 female) participants experienced 50 impulsive forces to their heads with and without an acoustic warning. Female participants demonstrated a 71 ms faster (p = 0.002) muscle activation onset compared to males after warning. The magnitude of muscle activation was not significant between sexes. Females exhibited 21% (p < 0.008) greater peak angular velocity in all force directions and 18% (p < 0.04) greater peak angular acceleration in sagittal plane compared to males. Females exhibited 15% (p = 0.03) greater peak linear acceleration compared to males only in sagittal flexion. Preparation attenuated head kinematics significantly (p < 0.03) in 11 out of 18 investigated head kinematics for both sexes. A warning eliciting a startle response 420 ms prior to the impact resulted in significant attenuation of all measured head kinematics in sagittal extension (p < 0.037). In conclusion, both sex and warning type were significant factors in head kinematics. These data provide insight into the complex relationship of muscle activation and sex, and may help identify innovative strategies to reduce head and neck injury risk in sports.


Assuntos
Traumatismos Craniocerebrais/fisiopatologia , Lesões do Pescoço/fisiopatologia , Músculos do Pescoço/fisiologia , Reflexo de Sobressalto/fisiologia , Aceleração , Acústica , Fatores Etários , Traumatismos em Atletas/fisiopatologia , Fenômenos Biomecânicos , Eletromiografia , Feminino , Humanos , Masculino , Contração Muscular , Pescoço/anatomia & histologia , Músculos do Pescoço/anatomia & histologia , Postura/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA