Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(25): e2300673120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37311002

RESUMO

Genome re-arrangements such as chromosomal inversions are often involved in adaptation. As such, they experience natural selection, which can erode genetic variation. Thus, whether and how inversions can remain polymorphic for extended periods of time remains debated. Here we combine genomics, experiments, and evolutionary modeling to elucidate the processes maintaining an inversion polymorphism associated with the use of a challenging host plant (Redwood trees) in Timema stick insects. We show that the inversion is maintained by a combination of processes, finding roles for life-history trade-offs, heterozygote advantage, local adaptation to different hosts, and gene flow. We use models to show how such multi-layered regimes of balancing selection and gene flow provide resilience to help buffer populations against the loss of genetic variation, maintaining the potential for future evolution. We further show that the inversion polymorphism has persisted for millions of years and is not a result of recent introgression. We thus find that rather than being a nuisance, the complex interplay of evolutionary processes provides a mechanism for the long-term maintenance of genetic variation.


Assuntos
Aclimatação , Inversão Cromossômica , Animais , Inversão Cromossômica/genética , Fluxo Gênico , Genômica , Heterozigoto , Neópteros
2.
Proc Natl Acad Sci U S A ; 119(36): e2206052119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037349

RESUMO

Plant-insect interactions are common and important in basic and applied biology. Trait and genetic variation can affect the outcome and evolution of these interactions, but the relative contributions of plant and insect genetic variation and how these interact remain unclear and are rarely subject to assessment in the same experimental context. Here, we address this knowledge gap using a recent host-range expansion onto alfalfa by the Melissa blue butterfly. Common garden rearing experiments and genomic data show that caterpillar performance depends on plant and insect genetic variation, with insect genetics contributing to performance earlier in development and plant genetics later. Our models of performance based on caterpillar genetics retained predictive power when applied to a second common garden. Much of the plant genetic effect could be explained by heritable variation in plant phytochemicals, especially saponins, peptides, and phosphatidyl cholines, providing a possible mechanistic understanding of variation in the species interaction. We find evidence of polygenic, mostly additive effects within and between species, with consistent effects of plant genotype on growth and development across multiple butterfly species. Our results inform theories of plant-insect coevolution and the evolution of diet breadth in herbivorous insects and other host-specific parasites.


Assuntos
Borboletas , Herbivoria , Plantas , Animais , Borboletas/genética , Genótipo , Herbivoria/genética , Larva , Plantas/genética
3.
Mol Ecol ; 33(7): e17310, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38441401

RESUMO

Understanding the processes that underlie the development of population genetic structure is central to the study of evolution. Patterns of genetic structure, in turn, can reveal signatures of isolation by distance (IBD), barriers to gene flow, or even the genesis of speciation. However, it is unclear how severe range restriction might impact the processes that dominate the development of genetic structure. In narrow endemic species, is population structure likely to be adaptive in nature, or rather the result of genetic drift? In this study, we investigated patterns of genetic diversity and structure in the narrow endemic Hayden's ringlet butterfly. Specifically, we asked to what degree genetic structure in the Hayden's ringlet can be explained by IBD, isolation by resistance (IBR) (in the form of geographic or ecological barriers to migration between populations), and isolation by environment (in the form of differences in host plant availability and preference). We employed a genotyping-by-sequencing (GBS) approach coupled with host preference assays, Bayesian modelling, and population genomic analyses to answer these questions. Our results suggest that despite their restricted range, levels of genetic diversity in the Hayden's ringlet are comparable to those seen in more widespread butterfly species. Hayden's ringlets showed a strong preference for feeding on grasses relative to sedges, but neither larval preference nor potential host availability at sampling sites correlated with genetic structure. We conclude that geography, in the form of IBR and simple IBD, was the major driver of contemporary patterns of differentiation in this narrow endemic species.


Assuntos
Borboletas , Variação Genética , Animais , Borboletas/genética , Teorema de Bayes , Deriva Genética , Geografia , Genética Populacional
4.
Glob Chang Biol ; 30(1): e17044, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37994481

RESUMO

Climate change is contributing to declines of insects through rising temperatures, altered precipitation patterns, and an increasing frequency of extreme events. The impacts of both gradual and sudden shifts in weather patterns are realized directly on insect physiology and indirectly through impacts on other trophic levels. Here, we investigated direct effects of seasonal weather on butterfly occurrences and indirect effects mediated by plant productivity using a temporally intensive butterfly monitoring dataset, in combination with high-resolution climate data and a remotely sensed indicator of plant primary productivity. Specifically, we used Bayesian hierarchical path analysis to quantify relationships between weather and weather-driven plant productivity on the occurrence of 94 butterfly species from three localities distributed across an elevational gradient. We found that snow pack exerted a strong direct positive effect on butterfly occurrence and that low snow pack was the primary driver of reductions during drought. Additionally, we found that plant primary productivity had a consistently negative effect on butterfly occurrence. These results highlight mechanisms of weather-driven declines in insect populations and the nuances of climate change effects involving snow melt, which have implications for ecological theories linking topographic complexity to ecological resilience in montane systems.


Assuntos
Borboletas , Neve , Animais , Estações do Ano , Borboletas/fisiologia , Teorema de Bayes , Tempo (Meteorologia) , Mudança Climática , Ecossistema
5.
J Evol Biol ; 37(6): 642-652, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38513126

RESUMO

Phenotypic variation within species can affect the ecological dynamics of populations and communities. Characterizing the genetic variation underlying such effects can help parse the roles of genetic evolution and plasticity in "eco-evolutionary dynamics" and inform how genetic variation may shape patterns of evolution. Here, we employ genome-wide association (GWA) methods in Timema cristinae stick insects and their co-occurring arthropod communities to identify genetic variation associated with community-level traits. Previous studies have shown that maladaptation (i.e., imperfect crypsis) of T. cristinae can reduce the abundance and species richness of other arthropods due to an increase in bird predation. Whether genetic variation that is independent of crypsis has similar effects is unknown and was tested here using genome-wide genotyping-by-sequencing data of stick insects, arthropod community information, and GWA mapping with Bayesian sparse linear mixed models. We find associations between genetic variation in stick insects and arthropod community traits. However, these associations disappear when host-plant traits are accounted for. We thus use path analysis to disentangle interrelationships among stick-insect genetic variation, host-plant traits, and community traits. This revealed that host-plant size has large effects on arthropod communities, while genetic variation in stick insects has a smaller, but still significant effect. Our findings demonstrate that (1) genetic variation in a species can be associated with community-level traits but that (2) interrelationships among multiple factors may need to be analyzed to disentangle whether such associations represent causal relationships. This work helps to build a framework for genomic studies of eco-evolutionary dynamics.


Assuntos
Variação Genética , Animais , Insetos/genética , Estudo de Associação Genômica Ampla , Teorema de Bayes
6.
Mol Ecol ; 32(6): 1497-1514, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35398939

RESUMO

Structural variants (SVs) can promote speciation by directly causing reproductive isolation or by suppressing recombination across large genomic regions. Whereas examples of each mechanism have been documented, systematic tests of the role of SVs in speciation are lacking. Here, we take advantage of long-read (Oxford nanopore) whole-genome sequencing and a hybrid zone between two Lycaeides butterfly taxa (L. melissa and Jackson Hole Lycaeides) to comprehensively evaluate genome-wide patterns of introgression for SVs and relate these patterns to hypotheses about speciation. We found >100,000 SVs segregating within or between the two hybridizing species. SVs and SNPs exhibited similar levels of genetic differentiation between species, with the exception of inversions, which were more differentiated. We detected credible variation in patterns of introgression among SV loci in the hybrid zone, with 562 of 1419 ancestry-informative SVs exhibiting genomic clines that deviated from null expectations based on genome-average ancestry. Overall, hybrids exhibited a directional shift towards Jackson Hole Lycaeides ancestry at SV loci, consistent with the hypothesis that these loci experienced more selection on average than SNP loci. Surprisingly, we found that deletions, rather than inversions, showed the highest skew towards excess ancestry from Jackson Hole Lycaeides. Excess Jackson Hole Lycaeides ancestry in hybrids was also especially pronounced for Z-linked SVs and inversions containing many genes. In conclusion, our results show that SVs are ubiquitous and suggest that SVs in general, but especially deletions, might disproportionately affect hybrid fitness and thus contribute to reproductive isolation.


Assuntos
Genômica , Metagenômica , Deriva Genética , Polimorfismo de Nucleotídeo Único/genética , Isolamento Reprodutivo
7.
Mol Ecol ; 32(24): 6809-6823, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37864542

RESUMO

Epigenetic mechanisms, such as DNA methylation, can influence gene regulation and affect phenotypic variation, raising the possibility that they contribute to ecological adaptation. Beginning to address this issue requires high-resolution sequencing studies of natural populations to pinpoint epigenetic regions of potential ecological and evolutionary significance. However, such studies are still relatively uncommon, especially in insects, and are mainly restricted to a few model organisms. Here, we characterize patterns of DNA methylation for natural populations of Timema cristinae adapted to two host plant species (i.e. ecotypes). By integrating results from sequencing of whole transcriptomes, genomes and methylomes, we investigate whether environmental, host and genetic differences of these stick insects are associated with methylation levels of cytosine nucleotides in the CpG context. We report an overall genome-wide methylation level for T. cristinae of ~14%, with methylation being enriched in gene bodies and impoverished in repetitive elements. Genome-wide DNA methylation variation was strongly positively correlated with genetic distance (relatedness), but also exhibited significant host-plant effects. Using methylome-environment association analysis, we pinpointed specific genomic regions that are differentially methylated between ecotypes, with these regions being enriched for genes with functions in membrane processes. The observed association between methylation variation and genetic relatedness, and with the ecologically important variable of host plant, suggests a potential role for epigenetic modification in T. cristinae adaptation. To substantiate such adaptive significance, future studies could test whether methylation can be transmitted across generations and the extent to which it responds to experimental manipulation in field and laboratory studies.


Assuntos
Metilação de DNA , Ecótipo , Animais , Metilação de DNA/genética , Genoma , Epigênese Genética , Insetos/genética
8.
Mol Ecol ; 31(17): 4444-4450, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35909250

RESUMO

We recently published a paper quantifying the genome-wide consequences of natural selection, including the effects of indirect selection due to the correlation of genetic regions (neutral or selected) with directly selected regions (Gompert et al., 2022). In their critique of our paper, Charlesworth and Jensen (2022) make two main points: (i) indirect selection is equivalent to hitchhiking and thus well documented (i.e., our results are not novel) and (ii) that we do not demonstrate the source of linkage disequilibrium (LD) between SNPs and the Mel-Stripe locus in the Timema cristinae experiment we analyse. As we discuss in detail below, neither of these are substantial criticisms of our work.


Assuntos
Genoma , Seleção Genética , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único/genética
9.
Mol Ecol ; 31(2): 467-481, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34704650

RESUMO

Understanding selection's impact on the genome is a major theme in biology. Functionally neutral genetic regions can be affected indirectly by natural selection, via their statistical association with genes under direct selection. The genomic extent of such indirect selection, particularly across loci not physically linked to those under direct selection, remains poorly understood, as does the time scale at which indirect selection occurs. Here, we use field experiments and genomic data in stick insects, deer mice and stickleback fish to show that widespread statistical associations with genes known to affect fitness cause many genetic loci across the genome to be impacted indirectly by selection. This includes regions physically distant from those directly under selection. Then, focusing on the stick insect system, we show that statistical associations between SNPs and other unknown, causal variants result in additional indirect selection in general and specifically within genomic regions of physically linked loci. This widespread indirect selection necessarily makes aspects of evolution more predictable. Thus, natural selection combines with chance genetic associations to affect genome-wide evolution across linked and unlinked loci and even in modest-sized populations. This process has implications for the application of evolutionary principles in basic and applied science.


Assuntos
Genoma , Seleção Genética , Animais , Genômica , Insetos/genética , Camundongos , Neópteros , Polimorfismo de Nucleotídeo Único
10.
Mol Ecol ; 30(20): 4991-5008, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34379852

RESUMO

Effective population size affects the efficacy of selection, rate of evolution by drift and neutral diversity levels. When species are subdivided into multiple populations connected by gene flow, evolutionary processes can depend on global or local effective population sizes. Theory predicts that high levels of diversity might be maintained by gene flow, even very low levels of gene flow, consistent with species long-term effective population size, but tests of this idea are mostly lacking. Here, we show that Lycaeides butterfly populations maintain low contemporary (variance) effective population sizes (e.g. ~200 individuals) and thus evolve rapidly by genetic drift. However, populations harboured high levels of genetic diversity consistent with an effective population size several orders of magnitude larger. We hypothesized that the differences in the magnitude and variability of contemporary versus long-term effective population sizes were caused by gene flow of sufficient magnitude to maintain diversity but only subtly affect evolution on generational timescales. Consistent with this hypothesis, we detected low but nontrivial gene flow among populations. Furthermore, using short-term population-genomic time-series data, we documented patterns consistent with predictions from this hypothesis, including a weak but detectable excess of evolutionary change in the direction of the mean (migrant gene pool) allele frequencies across populations and consistency in the direction of allele frequency change over time. The documented decoupling of diversity levels and short-term change by drift in Lycaeides has implications for our understanding of contemporary evolution and the maintenance of genetic variation in the wild.


Assuntos
Borboletas , Fluxo Gênico , Animais , Borboletas/genética , Deriva Genética , Variação Genética , Genética Populacional , Genômica , Humanos
11.
Mol Ecol ; 30(12): 2738-2755, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33786937

RESUMO

The coexistence of discrete morphs that differ in multiple traits is common within natural populations of many taxa. Such morphs are often associated with chromosomal inversions, presumably because the recombination suppressing effects of inversions help maintain alternate adaptive combinations of alleles across the multiple loci affecting these traits. However, inversions can also harbour selected mutations at their breakpoints, leading to their rise in frequency in addition to (or independent from) their role in recombination suppression. In this review, we first describe the different ways that breakpoints can create mutations. We then critically examine the evidence for the breakpoint-mutation and recombination suppression hypotheses for explaining the existence of discrete morphs associated with chromosomal inversions. We find that the evidence that inversions are favoured due to recombination suppression is often indirect. The evidence that breakpoints harbour mutations that are adaptive is also largely indirect, with the characterization of inversion breakpoints at the sequence level being incomplete in most systems. Direct tests of the role of suppressed recombination and breakpoint mutations in inversion evolution are thus needed. Finally, we emphasize how the two hypotheses of recombination suppression and breakpoint mutation can act in conjunction, with implications for understanding the emergence of supergenes and their evolutionary dynamics. We conclude by discussing how breakpoint characterization could improve our understanding of complex, discrete phenotypic forms in nature.


Assuntos
Inversão Cromossômica , Evolução Molecular , Alelos , Inversão Cromossômica/genética , Fenótipo
12.
Theor Appl Genet ; 134(9): 2749-2766, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34117909

RESUMO

KEY MESSAGE: Polygenic genome-wide association mapping identified two regions of the cowpea genome associated with different components of resistance to its major post-harvest pest, the seed beetle Callosobruchus maculatus. Cowpea (Vigna unguiculata) is an important grain and fodder crop in arid and semi-arid regions of Africa, Asia, and South America, where the cowpea seed beetle, Callosobruchus maculatus, is a serious post-harvest pest. Development of cultivars resistant to C. maculatus population growth in storage could increase grain yield and quality and reduce reliance on insecticides. Here, we use a MAGIC (multi-parent, advanced-generation intercross) population of cowpea consisting of 305 recombinant inbred lines (RILs) to identify genetic variants associated with resistance to seed beetles. Because inferences regarding the genetic basis of resistance may depend on the source of the pest or the assay protocol, we used two divergent geographic populations of C. maculatus and two complementary assays to measure several aspects of resistance. Using polygenic genome-wide association mapping models, we found that the cowpea RILs harbor substantial additive-genetic variation for most resistance measures. Variation in several components of resistance, including larval development time and survival, was largely explained by one or several linked loci on chromosome 5. A second region on chromosome 8 explained increased seed resistance via the induction of early-exiting larvae. Neither of these regions contained genes previously associated with resistance to insects that infest grain legumes. We found some evidence of gene-gene interactions affecting resistance, but epistasis did not contribute substantially to resistance variation in this mapping population. The combination of mostly high heritabilities and a relatively consistent and simple genetic architecture increases the feasibility of breeding for enhanced resistance to C. maculatus.


Assuntos
Cromossomos de Plantas/genética , Besouros/fisiologia , Resistência à Doença/imunologia , Variação Genética , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Vigna/genética , Animais , Mapeamento Cromossômico/métodos , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética , Vigna/crescimento & desenvolvimento , Vigna/parasitologia
13.
Mol Ecol ; 29(22): 4442-4456, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32945036

RESUMO

Hybrid zones act as natural laboratories where divergent genomes interact, providing powerful systems for examining the evolutionary processes underlying biological diversity. In this study, we characterized patterns of genomic and phenotypic variation resulting from hybridization between divergent intraspecific lineages of the Neotropical red-eyed treefrog (Agalychnis callidryas). We found genetic evidence of a newly discovered contact zone and phenotypic novelty in leg colour-a trait suspected to play a role in mediating assortative mating in this species. Analysis of hybrid ancestry revealed an abundance of later-generation Fn individuals, suggesting persistence of hybrids in the contact zone. Hybrids are predominantly of southern ancestry but are phenotypically more similar to northern populations. Genome-wide association mapping revealed QTL with measurable effects on leg-colour variation, but further work is required to dissect the architecture of this trait and establish causal links. Further, genomic cline analyses indicated substantial variation in patterns of introgression across the genome. Directional introgression of loci associated with different aspects of leg colour are inherited from each parental lineage, creating a distinct hybrid colour pattern. We show that hybridization can generate new phenotypes, revealing the evolutionary processes that potentially underlie patterns of phenotypic diversity in this iconic polytypic frog. Our study is consistent with a role of hybridization and sexual selection in lineage diversification, evolutionary processes that have been implicated in accelerating divergence in the most phenotypically diverse species.


Assuntos
Anuros , Estudo de Associação Genômica Ampla , Hibridização Genética , Animais , Evolução Biológica , Cor , Fenótipo
14.
Mol Ecol ; 29(7): 1328-1343, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32145112

RESUMO

Hybrid zones, whereby divergent lineages come into contact and eventually hybridize, can provide insights on the mechanisms involved in population differentiation and reproductive isolation, and ultimately speciation. Suture zones offer the opportunity to compare these processes across multiple species. In this paper we use reduced-complexity genomic data to compare the genetic and phenotypic structure and hybridization patterns of two mimetic butterfly species, Ithomia salapia and Oleria onega (Nymphalidae: Ithomiini), each consisting of a pair of lineages differentiated for their wing colour pattern and that come into contact in the Andean foothills of Peru. Despite similarities in their life history, we highlight major differences, both at the genomic and phenotypic level, between the two species. These differences include the presence of hybrids, variations in wing phenotype, and genomic patterns of introgression and differentiation. In I. salapia, the two lineages appear to hybridize only rarely, whereas in O. onega the hybrids are not only more common, but also genetically and phenotypically more variable. We also detected loci statistically associated with wing colour pattern variation, but in both species these loci were not over-represented among the candidate barrier loci, suggesting that traits other than wing colour pattern may be important for reproductive isolation. Our results contrast with the genomic patterns observed between hybridizing lineages in the mimetic Heliconius butterflies, and call for a broader investigation into the genomics of speciation in Ithomiini - the largest radiation of mimetic butterflies.


Assuntos
Borboletas/genética , Genética Populacional , Hibridização Genética , Animais , Borboletas/classificação , Especiação Genética , Genoma de Inseto , Genótipo , Peru , Fenótipo , Polimorfismo de Nucleotídeo Único , Isolamento Reprodutivo , Asas de Animais/anatomia & histologia
15.
Mol Ecol ; 28(9): 2136-2154, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30963641

RESUMO

Rapid adaptation can prevent extinction when populations are exposed to extremely marginal or stressful environments. Factors that affect the likelihood of evolutionary rescue from extinction have been identified, but much less is known about the evolutionary dynamics (e.g., rates and patterns of allele frequency change) and genomic basis of successful rescue, particularly in multicellular organisms. We conducted an evolve-and-resequence experiment to investigate the dynamics of evolutionary rescue at the genetic level in the cowpea seed beetle, Callosobruchus maculatus, when it is experimentally shifted to a stressful host plant, lentil. Low survival (~1%) at the onset of the experiment caused population decline. But adaptive evolution quickly rescued the population, with survival rates climbing to 69% by the F5 generation and 90% by the F10 generation. Population genomic data showed that rescue likely was caused by rapid evolutionary change at multiple loci, with many alleles fixing or nearly fixing within five generations of selection on lentil. Selection on these loci was only moderately consistent in time, but parallel evolutionary changes were evident in sublines formed after the lentil line had passed through a bottleneck. By comparing estimates of selection and genomic change on lentil across five independent C. maculatus lines (the new lentil-adapted line, three long-established lines and one case of failed evolutionary rescue), we found that adaptation on lentil occurred via somewhat idiosyncratic evolutionary changes. Overall, our results suggest that evolutionary rescue in this system can be caused by very strong selection on multiple loci driving rapid and pronounced genomic change.


Assuntos
Besouros/genética , Seleção Genética , Adaptação Fisiológica/genética , Animais , Teorema de Bayes , Evolução Biológica , Frequência do Gene , Deriva Genética , Aptidão Genética , Lens (Planta) , Desequilíbrio de Ligação , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Sementes
16.
Mol Ecol ; 28(6): 1224-1237, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30636326

RESUMO

Theory predicts that structural genomic variants such as inversions can promote adaptive diversification and speciation. Despite increasing empirical evidence that adaptive divergence can be triggered by one or a few large inversions, the degree to which widespread genomic regions under divergent selection are associated with structural variants remains unclear. Here we test for an association between structural variants and genomic regions that underlie parallel host-plant-associated ecotype formation in Timema cristinae stick insects. Using mate-pair resequencing of 20 new whole genomes we find that moderately sized structural variants such as inversions, deletions and duplications are widespread across the genome, being retained as standing variation within and among populations. Using 160 previously published, standard-orientation whole genome sequences we find little to no evidence that the DNA sequences within inversions exhibit accentuated differentiation between ecotypes. In contrast, a formerly described large region of reduced recombination that harbours genes controlling colour-pattern exhibits evidence for accentuated differentiation between ecotypes, which is consistent with differences in the frequency of colour-pattern morphs between host-associated ecotypes. Our results suggest that some types of structural variants (e.g., large inversions) are more likely to underlie adaptive divergence than others, and that structural variants are not required for subtle yet genome-wide genetic differentiation with gene flow.


Assuntos
Ecótipo , Genoma/genética , Variação Estrutural do Genoma/genética , Neópteros/genética , Adaptação Biológica/genética , Animais , Deriva Genética , Genética Populacional , Genômica , Metagenômica/métodos , Seleção Genética
17.
Mol Ecol ; 28(12): 2967-2985, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31038777

RESUMO

Plant-insect interactions are ubiquitous, and have been studied intensely because of their relevance to damage and pollination in agricultural plants, and to the ecology and evolution of biodiversity. Variation within species can affect the outcome of these interactions. Specific genes and chemicals that mediate these interactions have been identified, but genome- or metabolome-scale studies might be necessary to better understand the ecological and evolutionary consequences of intraspecific variation for plant-insect interactions. Here, we present such a study. Specifically, we assess the consequences of genome-wide genetic variation in the model plant Medicago truncatula for Lycaeides melissa caterpillar growth and survival (larval performance). Using a rearing experiment and a whole-genome SNP data set (>5 million SNPs), we found that polygenic variation in M. truncatula explains 9%-41% of the observed variation in caterpillar growth and survival. Genetic correlations among caterpillar performance and other plant traits, including structural defences and some anonymous chemical features, suggest that multiple M. truncatula alleles have pleiotropic effects on plant traits and caterpillar performance (or that substantial linkage disequilibrium exists among distinct loci affecting subsets of these traits). A moderate proportion of the genetic effect of M. truncatula alleles on L. melissa performance can be explained by the effect of these alleles on the plant traits we measured, especially leaf toughness. Taken together, our results show that intraspecific genetic variation in M. truncatula has a substantial effect on the successful development of L. melissa caterpillars (i.e., on a plant-insect interaction), and further point toward traits potentially mediating this genetic effect.


Assuntos
Borboletas/genética , Genômica , Medicago truncatula/genética , Animais , Biodiversidade , Borboletas/crescimento & desenvolvimento , Variação Genética/genética , Genoma de Planta/genética , Larva/genética , Larva/crescimento & desenvolvimento , Desequilíbrio de Ligação , Medicago truncatula/crescimento & desenvolvimento , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
18.
Glob Chang Biol ; 25(6): 2127-2136, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30770601

RESUMO

Certain general facets of biotic response to climate change, such as shifts in phenology and geographic distribution, are well characterized; however, it is not clear whether the observed similarity of responses across taxa will extend to variation in other population-level processes. We examined population response to climatic variation using long-term incidence data (collected over 42 years) encompassing 149 butterfly species and considerable habitat diversity (10 sites along an elevational gradient from sea level to over 2,700 m in California). Population responses were characterized by extreme heterogeneity that was not attributable to differences in species composition among sites. These results indicate that habitat heterogeneity might be a buffer against climate change and highlight important questions about mechanisms maintaining interpopulation differences in responses to weather. Despite overall heterogeneity of response, population dynamics were accurately predicted by our model for many species at each site. However, the overall correlation between observed and predicted incidence in a cross validation analysis was moderate (Pearson's r = 0.23, SE 0.01), and 97% of observed data fell within the predicted 95% credible intervals. Prediction was most successful for more abundant species as well as for sites with lower annual turnover. Population-level heterogeneity in response to climate variation and the limits of our predictive power highlight the challenges for a future of increasing climatic variability.


Assuntos
Borboletas/fisiologia , Mudança Climática , Animais , California , Ecossistema , Dinâmica Populacional
19.
Biol Lett ; 15(1): 20180723, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30958212

RESUMO

Many tropical fruit-feeding nymphalid butterflies are associated with either the forest canopy or the understorey; however, the exceptions offer insights into the origins of tropical diversity. As it occurs in both habitats of tropical forests in Ecuador and Peru, Archaeoprepona demophon is one such exception. We compared patterns of occurrence of A. demophon in the canopy and understorey and population genomic variation for evidence of ecological and genetic differentiation between habitats. We found that butterfly occurrences in the canopy were largely uncorrelated with occurrences in the understorey at both localities, indicating independent demographic patterns in the two habitats. We also documented modest, significant genome-level differentiation at both localities. Genetic differentiation between habitat types (separated by approx. 20 m in elevation) was comparable to levels of differentiation between sampling locations (approx. 1500 km). We conclude that canopy and understorey populations of A. demophon represent incipient independent evolutionary units. These findings support the hypothesis that divergence between canopy and understorey-associated populations might be a mechanism generating insect diversity in the tropics.


Assuntos
Borboletas , Animais , Evolução Biológica , Ecossistema , Equador , Florestas , Árvores , Clima Tropical
20.
BMC Evol Biol ; 18(1): 61, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29699502

RESUMO

BACKGROUND: Hybridization is very common in plants, and the incorporation of new alleles into existing lineages (i.e. admixture) can blur species boundaries. However, admixture also has the potential to increase standing genetic variation. With new sequencing methods, we can now study admixture and reproductive isolation at a much finer scale than in the past. The genus Boechera is an extraordinary example of admixture, with over 400 hybrid derivates of varying ploidy levels. Yet, few studies have assessed admixture in this genus on a genomic scale. RESULTS: In this study, we used Genotyping-by-Sequencing (GBS) to clarify the evolution of the Boechera puberula clade, whose six members are scattered across the western United States. We further assessed patterns of admixture and reproductive isolation within the group, including two additional species (B. stricta and B. retrofracta) that are widespread across North America. Based on 14,815 common genetic variants, we found evidence for some cases of hybridization. We find evidence of both recent and more ancient admixture, and that levels of admixture vary across species. CONCLUSIONS: We present evidence for a monophyletic origin of the B. puberula group, and a split of B. puberula into two subspecies. Further, when inferring reproductive isolation on the basis of presence and absence of admixture, we found that the accumulation of reproductive isolation between species does not seem to occur linearly with time since divergence in this system. We discuss our results in the context of sexuality and asexuality in Boechera.


Assuntos
Brassicaceae/genética , Variação Genética , Filogenia , Isolamento Reprodutivo , Alelos , Animais , Evolução Biológica , Diploide , Genótipo , Hibridização Genética , Repetições de Microssatélites/genética , América do Norte , Ploidias , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA