Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Biochemistry (Mosc) ; 88(9): 1304-1317, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37770397

RESUMO

Cholera is a deadly infection disease, which is usually associated with low hygiene levels and limited access to high-quality drinking water. An effective way to prevent cholera is the use of vaccines. Among active vaccine components there is the CtxB protein (cholera toxin ß-subunit). In the current work, we have developed a genetic system for production of the recombinant CtxB in E. coli cells and studied conditions for synthesis and purification of the target product at the laboratory scale. It has been found that the optimal algorithm for isolation of the recombinant protein is to grow E. coli culture in the synthetic M9 medium with glycerol, followed by CtxB purification out of the spent culture medium using Ni2+-chelate affinity chromatography techniques. Forty-eight hours after induction of CtxB expression, concentration of the target product could be up to 50 mg/liter in the culture medium. The CtxB protein retains its pentameric structure during expression and through purification. The latter makes it possible to consider the developed system as a promising tool for the industrial-level production of recombinant CtxB for medical and research purposes.

2.
Biochemistry (Mosc) ; 88(9): 1267-1273, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37770393

RESUMO

The solute carrier organic anion transporter family member, OATP1B1, is one of the most important transporter proteins, which mediate penetration of many endogenous substances and xenobiotics into hepatocytes. A model system providing expression of the functional protein is needed to assess interaction of OATP1B1 with various substances. Based on the HEK293 cells, we obtained the HEK293-OATP1B1 cell line, constitutively expressing the SLCO1B1 gene encoding the OATP1B1 transporter. Expression of the SLCO1B1 gene was confirmed by real-time PCR analysis and Western blotting. Functionality of the transporter was assessed by the transport of atorvastatin, which is a substrate of OATP1B1. Cells of the resulting cell line, which selectively express the functionally active recombinant OATP1B1 transporter, can be used to study functions of the protein and to test drugs for being substrates, inducers, and inhibitors of OATP1B1, and to assess the risks of drug interactions.


Assuntos
Transportadores de Ânions Orgânicos , Humanos , Células HEK293 , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Hepatócitos/metabolismo , Transporte Biológico , Interações Medicamentosas , Proteínas de Membrana Transportadoras/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo
3.
Int J Mol Sci ; 24(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36613684

RESUMO

The study of diseases of the central nervous system (CNS) at the molecular level is challenging because of the complexity of neural circuits and the huge number of specialized cell types. Moreover, genomic association studies have revealed the complex genetic architecture of schizophrenia and other genetically determined mental disorders. Investigating such complex genetic architecture to decipher the molecular basis of CNS pathologies requires the use of high-throughput models such as cells and their derivatives. The time is coming for high-throughput genetic technologies based on CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat)/Cas systems to manipulate multiple genomic targets. CRISPR/Cas systems provide the desired complexity, versatility, and flexibility to create novel genetic tools capable of both altering the DNA sequence and affecting its function at higher levels of genetic information flow. CRISPR/Cas tools make it possible to find and investigate the intricate relationship between the genotype and phenotype of neuronal cells. The purpose of this review is to discuss innovative CRISPR-based approaches for studying the molecular mechanisms of CNS pathologies using cellular models.


Assuntos
Transtornos do Neurodesenvolvimento , Esquizofrenia , Humanos , Sistemas CRISPR-Cas/genética , Esquizofrenia/genética , Genômica , Genoma , Transtornos do Neurodesenvolvimento/genética , Edição de Genes
4.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34769085

RESUMO

Approximately 1/6 of humanity is at high risk of experiencing cholera epidemics. The development of effective and safe vaccines against Vibrio cholerae, the primary cause of cholera, is part of the public health measures to prevent cholera epidemics. Natural nontoxigenic V. cholerae isolates represent a source of new genetically improved and relatively safe vaccine strains. However, the genomic engineering of wild-type V. cholerae strains is difficult, and these strains are genetically unstable due to their high homologous recombination activity. We comprehensively characterized two V. cholerae isolates using genome sequencing, bioinformatic analysis, and microscopic, physiological, and biochemical tests. Genetic constructs were Gibson assembled and electrotransformed into V. cholerae. Bacterial colonies were assessed using standard microbiological and immunological techniques. As a result, we created a synthetic chromoprotein-expressing reporter operon. This operon was used to improve the V. cholerae genome engineering approach and monitor the stability of the genetic constructs. Finally, we created a stable candidate V. cholerae vaccine strain bearing a recA deletion and expressing the ß-subunit of cholera toxin. Thus, we developed a strategy for the rapid creation of genetically stable and relatively safe candidate vaccine strains. This strategy can be applied not only to V. cholerae but also to other important human bacterial pathogens.


Assuntos
Vacinas contra Cólera , Óperon , Vibrio cholerae/genética , Técnicas de Transferência de Genes , Genes Reporter , Engenharia Genética , Genoma Bacteriano
5.
Pharmaceuticals (Basel) ; 16(11)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-38004395

RESUMO

2-Ethyl-6-methyl-3-hydroxypyridine succinate (EMHPS, Mexidol) is an original antioxidant and an anti-ischemic drug with the possibility of wide applications in the complex therapy of diseases, accompanied by the development of oxidative stress and ischemia; for example, ischemic stroke, chronic cerebral ischemia, and chronic heart failure. The use of EMHPS in the complex therapy of the above diseases may cause the development of drug-drug interactions, particularly pharmacokinetic interactions at the level of transporter proteins. In the present study, we evaluated the interaction of EMHPS with ABCB1 and SLCO1B1. In Caco-2 cells, it was shown that EMHPS is not a substrate of ABCB1 and that it does not affect its expression, but at the same time, it inhibits the activity of this transporter. Its inhibitory activity was inferior to verapamil-a classic inhibitor of ABCB1. In HEK293 and HEK293-SLCO1B1 cells, it was shown that EMHPS is not a substrate of SLCO1B1 either, but that it inhibited the activity of the transporter. However, its inhibitory activity was inferior to the classic inhibitor of SLCO1B1-rifampicin. Furthermore, it was found out that EMHPS does not affect SLCO1B1 expression in HepG2 cells. The approach proposed by the FDA (2020) and the International Transporter Consortium (2010) was used to assess the clinical significance of the study results. The effect of EMHPS on SLCO1B1 and the systemic inhibition of ABCB1 by EMPHS are not clinically significant, but ABCB1 inhibition by EMHPS in the gastrointestinal tract should be tested in vivo through clinical trials.

6.
Microorganisms ; 11(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36677343

RESUMO

Tuberculosis is one of the most threatening infectious diseases and represents an important and significant reason for mortality in high-burden regions. The only licensed vaccine, BCG, is hardly capable of establishing long-term tuberculosis protection and is highly variable in its effectiveness. Even after 100 years of BCG use and research, we still cannot unequivocally answer the question of which immune correlates of protection are crucial to prevent Mycobacterium tuberculosis (Mtb) infection or the progression of the disease. The development of a new vaccine against tuberculosis arises a nontrivial scientific challenge caused by several specific features of the intracellular lifestyle of Mtb and the ability of the pathogen to manipulate host immunity. The purpose of this review is to discuss promising strategies and the possibilities of creating a new vaccine that could replace BCG and provide greater protection. The considered approaches include supplementing mycobacterial strains with immunodominant antigens and genetic engineering aimed at altering the interaction between the bacterium and the host cell, such as the exit from the phagosome. Improved new vaccine strains based on BCG and Mtb undergoing clinical evaluation are also overviewed.

7.
Microb Ecol ; 59(2): 296-310, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19730766

RESUMO

Dormancy among nonsporulating actinobacteria is now a widely accepted phenomenon. In Micrococcus luteus, the resuscitation of dormant cells is caused by a small secreted protein (resuscitation-promoting factor, or Rpf) that is found in "spent culture medium." Rpf is encoded by a single essential gene in M. luteus. Homologs of Rpf are widespread among the high G + C Gram-positive bacteria, including mycobacteria and streptomycetes, and most organisms make several functionally redundant proteins. M. luteus Rpf comprises a lysozyme-like domain that is necessary and sufficient for activity connected through a short linker region to a LysM motif, which is present in a number of cell-wall-associated enzymes. Muralytic activity is responsible for resuscitation. In this report, we characterized a number of environmental isolates of M. luteus, including several recovered from amber. There was substantial variation in the predicted rpf gene product. While the lysozyme-like and LysM domains showed little variation, the linker region was elongated from ten amino acid residues in the laboratory strains to as many as 120 residues in one isolate. The genes encoding these Rpf proteins have been characterized, and a possible role for the Rpf linker in environmental adaptation is proposed. The environmental isolates show enhanced resistance to lysozyme as compared with the laboratory strains and this correlates with increased peptidoglycan acetylation. In strains that make a protein with an elongated linker, Rpf was bound to the cell wall, rather than being released to the growth medium, as occurs in reference strains. This rpf gene was introduced into a lysozyme-sensitive reference strain. Both rpf genes were expressed in transformants which showed a slight but statistically significant increase in lysozyme resistance.


Assuntos
Proteínas de Bactérias/metabolismo , Citocinas/metabolismo , Variação Genética , Micrococcus luteus/genética , Ácido Acético/metabolismo , Acetilação , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Parede Celular/metabolismo , Clonagem Molecular , Citocinas/genética , Genes Bacterianos , Genes Essenciais , Micrococcus luteus/crescimento & desenvolvimento , Micrococcus luteus/metabolismo , Dados de Sequência Molecular , Muramidase/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-28861399

RESUMO

Earlier we demonstrated that the adenylyl cyclase (AC) encoded by the MSMEG_4279 gene plays a key role in the resuscitation and growth of dormant Mycobacterium smegmatis and that overexpression of this gene leads to an increase in intracellular cAMP concentration and prevents the transition of M. smegmatis from active growth to dormancy in an extended stationary phase accompanied by medium acidification. We surmised that the homologous Rv2212 gene of M. tuberculosis (Mtb), the main cAMP producer, plays similar physiological roles by supporting, under these conditions, the active state and reactivation of dormant bacteria. To test this hypothesis, we established Mtb strain overexpressing Rv2212 and compared its in vitro and in vivo growth characteristics with a control strain. In vitro, the AC-overexpressing pMindRv2212 strain demonstrated faster growth in a liquid medium, prolonged capacity to form CFUs and a significant delay or even prevention of transition toward dormancy. AC-overexpressing cells exhibited easier recovery from dormancy. In vivo, AC-overexpressing bacteria demonstrated significantly higher growth rates (virulence) in the lungs and spleens of infected mice compared to the control strain, and, unlike the latter, killed mice in the TB-resistant strain before month 8 of infection. Even in the absence of selecting hygromycin B, all pMindRv2212 CFUs retained the Rv2212 insert during in vivo growth, strongly suggesting that AC overexpression is beneficial for bacteria. Taken together, our results indicate that cAMP supports the maintenance of Mtb cells vitality under unfavorable conditions in vitro and their virulence in vivo.


Assuntos
Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Tuberculose/microbiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Contagem de Colônia Microbiana , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Feminino , Higromicina B/farmacologia , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/patogenicidade , Baço/microbiologia , Baço/fisiologia , Tuberculose/patologia , Virulência
9.
FEMS Microbiol Lett ; 352(1): 69-77, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24417293

RESUMO

Toxin-antitoxin (TA) loci are widely spread in bacterial plasmids and chromosomes. Toxins affect important functions of bacterial cells such as translation, replication and cell-wall synthesis, whereas antitoxins are toxin inhibitors. Participation in formation of the dormant state in bacteria is suggested to be a possible function of toxins. Here we show that overexpression of VapC toxin in Mycobacterium smegmatis results in development of morphologically distinct ovoid cells. The ovoid cells were nonreplicating and revealed a low level of uracil incorporation and respiration that indicated their dormant status. To validate the role of VapBC in dormancy formation, we used a model of dormant, 'nonculturable' (NC) M. smegmatis cells obtained in potassium-limited conditions. Overexpression of VapB antitoxin prevented transition to dormancy, presumably due to a decreased level of the free VapC protein. Indeed, this effect of the VapB was neutralized by coexpression of the cognate VapC as a part of the vapBC operon. In summary, these findings reveal participation of vapBC products in formation of the dormant state in M. smegmatis.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Glicoproteínas de Membrana/metabolismo , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium smegmatis/metabolismo , Antitoxinas/metabolismo , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Proteínas de Ligação a DNA/genética , Regulação Bacteriana da Expressão Gênica , Glicoproteínas de Membrana/genética , Mycobacterium smegmatis/genética
10.
FEMS Microbiol Lett ; 308(2): 101-7, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20497227

RESUMO

The role of histone-like protein (Hlp) in the development of a dormant state in long-incubated stationary-phase Mycobacterium smegmatis cells was studied in two models: (1) adoption of 'nonculturable' (NC) state, which is reversible due to resuscitation with proteinaceous resuscitation-promoting factor (Rpf) and (2) the formation of morphologically distinct, ovoid resting forms. In the first model, inactivation of the hlp gene resulted in prolongation of culturability of starved cells followed by irreversible nonculturability when mycobacterial cells were unresponsive to resuscitation with Rpf. In the second model, M. smegmatis strain with the inactivated hlp gene was able to form dormant ovoid cells, but they were less resistant to heating and UV radiation than those of wild-type strain. The susceptibility of ovoid cells produced by Delta hlp mutant to these damaging factors was probably due to a less condensed state of DNA, as revealed by fluorescent microscopy and DAPI staining. Evidently, Hlp is essential for cell viability at a later stage of NC dormancy or provides a greater stability of specialized dormant forms.


Assuntos
Proteínas de Bactérias/fisiologia , Proteínas de Ligação a DNA/fisiologia , Regulação Bacteriana da Expressão Gênica , Mycobacterium smegmatis/fisiologia , Deleção de Genes , Temperatura Alta , Humanos , Viabilidade Microbiana/efeitos da radiação , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium smegmatis/efeitos da radiação , Raios Ultravioleta
11.
PLoS One ; 4(12): e8174, 2009 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-20016836

RESUMO

BACKGROUND: Resuscitation promoting factors (RPF) are secreted proteins involved in reactivation of dormant actinobacteria, including Mycobacterium tuberculosis. They have been considered as prospective targets for the development of new anti-tuberculosis drugs preventing reactivation of dormant tubercle bacilli, generally associated with latent tuberculosis. However, no inhibitors of Rpf activity have been reported so far. The goal of this study was to find low molecular weight compounds inhibiting the enzymatic and biological activities of Rpfs. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe a novel class of 2-nitrophenylthiocyanates (NPT) compounds that inhibit muralytic activity of Rpfs with IC(50) 1-7 microg/ml. Fluorescence studies revealed interaction of active NPTs with the internal regions of the Rpf molecule. Candidate inhibitors of Rpf enzymatic activity showed a bacteriostatic effect on growth of Micrococcus luteus (in which Rpf is essential for growth protein) at concentrations close to IC(50). The candidate compounds suppressed resuscitation of dormant ("non-culturable") cells of M. smegmatis at 1 microg/ml or delayed resuscitation of dormant M. tuberculosis obtained in laboratory conditions at 10 microg/ml. However, they did not inhibit growth of active mycobacteria under these concentrations. CONCLUSIONS/SIGNIFICANCE: NPT are the first example of low molecular weight compounds that inhibit the enzymatic and biological activities of Rpf proteins.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Citocinas/antagonistas & inibidores , Inibidores Enzimáticos/análise , Inibidores Enzimáticos/farmacologia , Mycobacterium tuberculosis/citologia , Mycobacterium tuberculosis/efeitos dos fármacos , Proteínas de Bactérias/química , Citocinas/química , Fluorescência , Testes de Sensibilidade Microbiana , Peso Molecular , Mycobacterium smegmatis/citologia , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Estrutura Secundária de Proteína , Tiocianatos/síntese química , Tiocianatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA