Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nanotechnology ; 35(12)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38086071

RESUMO

At low temperatures about 230 °C, bilayer InGaZnO/In2O3thin film transistors (TFTs) were prepared by a solution process with lightwave annealing. The InGaZnO/In2O3bilayer TFTs with SiO2as dielectric layer show high electrical performances, such as a mobility of 7.63 cm2V-1s-1, a threshold voltage (Vth) of 3.8 V, and an on/off ratio higher than 107, which are superior to single-layer InGaZnO TFTs or In2O3TFTs. Moreover, bilayer InGaZnO/In2O3TFTs demonstrated a great bias stability enhancement due to the introduction of top InGaZnO film act as a passivation layer, which could prevent the interaction of ambient air with the bottom In2O3layer. By using high dielectric constant AlOxfilm, the InGaZnO/In2O3TFTs exhibit an improved mobility of 47.7 cm2V-1s-1. The excellent electrical performance of the solution-based InGaZnO/In2O3TFTs shows great application potential for low-cost flexible printed electronics.

2.
Cost Eff Resour Alloc ; 21(1): 20, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37004046

RESUMO

BACKGROUND AND OBJECTIVE: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide, especially in China. According to the 2021 Chinese Society of Clinical Oncology guidelines, sorafenib, lenvatinib, atezolizumab combined with bevacizumab, and sintilimab combined with bevacizumab are recommended as first-line treatment options for advanced HCC. This study provides a cost-effectiveness analysis of these treatments from the patient perspective. METHODS: A partitioned survival model was established using the TreeAge 2019 software to evaluate the cost-effectiveness. The model includes three states, namely progression-free survival, progressive disease, and death. Clinical data were derived from three randomized controlled studies involving patients with advanced HCC who received the following treatment: sorafenib and lenvatinib (NCT01761266); atezolizumab in combination with bevacizumab (NCT03434379); and sintilimab in combination with bevacizumab (NCT03794440). Cost and clinical preference data were obtained from the literature and interviews with clinicians. RESULTS: All compared with sorafenib therapy, lenvatinib had an incremental cost-effectiveness ratio (ICER) of US$188,625.25 per quality-adjusted life year (QALY) gained; sintilimab plus bevacizumab had an ICER of US$75,150.32 per QALY gained; and atezolizumab plus bevacizumab had an ICER of US$144,513.71 per QALY gained. The probabilistic sensitivity analysis indicated that treatment with sorafenib achieved a 100% probability of cost-effectiveness at a threshold of US$36,600/QALY. One-way sensitivity analysis revealed that the results were most sensitive to the medical insurance reimbursement ratio and drug prices. CONCLUSIONS: In this economic evaluation, therapy with lenvatinib, sintilimab plus bevacizumab, and atezolizumab plus bevacizumab generated incremental QALYs compared with sorafenib; however, these regimens were not cost-effective at a willingness-to-pay threshold of US$36,600 per QALY. Therefore, some patients may achieve preferred economic outcomes from these three therapies by tailoring the regimen based on individual patient factors.

3.
Small ; 17(23): e2101301, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33939883

RESUMO

Achieving uniform lithium (Li) deposition is the key to tackle uncontrollable dendrite growth, which hinders the application of Li metal anodes. In this study, molten Li is thermally injected into a 3D framework by growing lithiophilic CoO nanosheets on Cu foam (CF). The CoO layer grown on the CF surface physically adsorbs molten Li, which makes it possible to spontaneously wet the framework. The morphology of CoO nanosheets does not change during the Li injection process and formed a multi-level structure with the CF, which is difficult to be achieved previously, as most lithiophilic oxides undergo serious chemical changes due to chemical reaction with Li and cannot provide a stable submicron structure for the subsequent Li stripping/plating process. The super-assembled multi-level structure provides abundant Li nucleation sites and electrolyte/electrode contact areas for rapid charge transfer in the composite anode. Therefore, the prolonged lifespan of symmetrical cells for 300 cycles at 10 and 10 mAh cm-2 with lower polarization is achieved, which further renders the LiFePO4 and Li4 Ti5 O12 based full cells with improved capacity retention up to 87.3% and 80.1% after 500 cycles at 1 C. These results suggest that the composite anode has a great application prospect.

4.
Polymers (Basel) ; 16(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38475331

RESUMO

Silk fibroin (SF) has excellent biocompatibility and is one of the most commonly used polymer materials. However, SF fibers have serious drawbacks as antibacterial materials due to their lack of stability and bacterial resistance. Therefore, it is of paramount significance to enhance the stability and bolster the bacterial resistance of SF fibers. In this study, SF fibers were fabricated and loaded with Ag nanoparticles (AgNPs) to improve the antimicrobial properties of the fibers. The impact of reduction conditions on the size of AgNPs was also investigated. In an antibacterial test, the fibers that were prepared exhibited over 98% bacterial resistance against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Therefore, as an efficient antibacterial material, these fibers are expected to become a candidate material in medical and textile fields. This study offers a novel approach for the utilization of SF fibers in the realm of antibacterial applications.

5.
Health Econ Rev ; 14(1): 48, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967718

RESUMO

Since 2017, immune checkpoint inhibitors (ICIs) have been available for the treatment of advanced hepatocellular carcinoma (HCC) or unresectable HCC, but their adoption into national medical insurance programs is still limited. Cost-effectiveness evidence can help to inform treatment decisions. This systematic review aimed to provide a critical summary of economic evaluations of ICIs as a treatment for advanced HCC and identify key drivers (PROSPERO 2023: CRD42023417391). The databases used included Scopus, Web of Science, PubMed, Embase, and Cochrane Central. Economic evaluations of ICIs for the treatment of advanced HCC were included. Studies were screened by two people. Of the 898 records identified, 17 articles were included. The current evidence showed that ICIs, including atezolizumab plus bevacizumab, sintilimab plus bevacizumab/bevacizumab biosimilar, nivolumab, camrelizumab plus rivoceranib, pembrolizumab plus lenvatinib, tislelizumab, durvalumab, and cabozantinib plus atezolizumab, are probably not cost-effective in comparison with tyrosine kinase inhibitors or other ICIs. The most influential parameters were price of anticancer drugs, hazard ratios for progression-free survival and overall survival, and utility for health statest. Our review demonstrated that ICIs were not a cost-effective intervention in advanced HCC. Although ICIs can significantly enhance the survival of patients with advanced HCC, decision-makers should consider the findings of economic evaluations and affordability before adoption of new therapies.

6.
Cell Metab ; 36(2): 438-453.e6, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38325338

RESUMO

The hypothalamus plays a crucial role in the progression of obesity and diabetes; however, its structural complexity and cellular heterogeneity impede targeted treatments. Here, we profiled the single-cell and spatial transcriptome of the hypothalamus in obese and sporadic type 2 diabetic macaques, revealing primate-specific distributions of clusters and genes as well as spatial region, cell-type-, and gene-feature-specific changes. The infundibular (INF) and paraventricular nuclei (PVN) are most susceptible to metabolic disruption, with the PVN being more sensitive to diabetes. In the INF, obesity results in reduced synaptic plasticity and energy sensing capability, whereas diabetes involves molecular reprogramming associated with impaired tanycytic barriers, activated microglia, and neuronal inflammatory response. In the PVN, cellular metabolism and neural activity are suppressed in diabetic macaques. Spatial transcriptomic data reveal microglia's preference for the parenchyma over the third ventricle in diabetes. Our findings provide a comprehensive view of molecular changes associated with obesity and diabetes.


Assuntos
Diabetes Mellitus , Núcleo Hipotalâmico Paraventricular , Animais , Núcleo Hipotalâmico Paraventricular/metabolismo , Transcriptoma/genética , Hipotálamo/metabolismo , Obesidade/metabolismo , Diabetes Mellitus/metabolismo , Perfilação da Expressão Gênica
7.
Nutrients ; 15(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36839405

RESUMO

Calorie restriction (CR) and exercise training (EX) are two critical lifestyle interventions for the prevention and treatment of metabolic diseases, such as obesity and diabetes. Brown adipose tissue (BAT) and skeletal muscle are two important organs for the generation of heat. Here, we undertook detailed transcriptional profiling of these two thermogenic tissues from mice treated subjected to CR and/or EX. We found transcriptional reprogramming of BAT and skeletal muscle as a result of CR but little from EX. Consistent with this, CR induced alterations in the expression of genes encoding adipokines and myokines in BAT and skeletal muscle, respectively. Deconvolution analysis showed differences in the subpopulations of myogenic cells, mesothelial cells and endogenic cells in BAT and in the subpopulations of satellite cells, immune cells and endothelial cells in skeletal muscle as a result of CR or EX. NicheNet analysis, exploring potential inter-organ communication, indicated that BAT and skeletal muscle could mutually regulate their fatty acid metabolism and thermogenesis through ligands and receptors. These data comprise an extensive resource for the study of thermogenic tissue molecular responses to CR and/or EX in a healthy state.


Assuntos
Tecido Adiposo Marrom , Restrição Calórica , Camundongos , Animais , Tecido Adiposo Marrom/metabolismo , Células Endoteliais , Transcriptoma , Termogênese/fisiologia , Músculo Esquelético/metabolismo , Metabolismo Energético/fisiologia
8.
J Cachexia Sarcopenia Muscle ; 14(5): 2126-2142, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37469245

RESUMO

BACKGROUND: DJ-1 is a causative gene for Parkinson's disease. DJ-1-deficient mice develop gait-associated progressive behavioural abnormalities and hypoactive forearm grip strength. However, underlying activity mechanisms are not fully explored. METHODS: Western blotting and quantitative real-time polymerase chain reaction approaches were adopted to analyse DJ-1 expression in skeletal muscle from aged humans or mice and compared with young subjects. Skeletal muscle-specific-DJ-1 knockout (MDKO) mice were generated, followed by an assessment of the physical activity phenotypes (grip strength, maximal load capacity, and hanging, rotarod, and exercise capacity tests) of the MDKO and control mice on the chow diet. Muscular atrophy phenotypes (cross-sectional area and fibre types) were determined by imaging and quantitative real-time polymerase chain reaction. Mitochondrial function and skeletal muscle morphology were evaluated by oxygen consumption rate and electron microscopy, respectively. Tail suspension was applied to address disuse atrophy. RNA-seq analysis was performed to indicate molecular changes in muscles with DJ-1 ablation. Dual-luciferase reporter assays were employed to identify the promoter region of Trim63 and Fbxo32 genes, which were indirectly regulated by DJ-1 via the FoxO1 pathway. Cytoplasmic and nuclear fractions of DJ-1-deleted muscle cells were analysed by western blotting. Compound 23 was administered into the gastrocnemius muscle to mimic the of DJ-1 deletion effects. RESULTS: DJ-1 expression decreased in atrophied muscles of aged human (young men, n = 2; old with aged men, n = 2; young women, n = 2; old with aged women, n = 2) and immobilization mice (n = 6, P < 0.01). MDKO mice exhibited no body weight difference compared with control mice on the chow diet (Flox, n = 8; MDKO, n = 9). DJ-1-deficient muscles were slightly dystrophic (Flox, n = 7; MDKO, n = 8; P < 0.05), with impaired physical activities and oxidative capacity (n = 8, P < 0.01). In disuse-atrophic conditions, MDKO mice showed smaller cross-sectional area (n = 5, P < 0.01) and more central nuclei than control mice (Flox, n = 7; MDKO, n = 6; P < 0.05), without alteration in muscle fibre types (Flox, n = 6; MDKO, n = 7). Biochemical analysis indicated that reduced mitochondrial function and upregulated of atrogenes induced these changes. Furthermore, RNA-seq analysis revealed enhanced activity of the FoxO1 signalling pathway in DJ-1-ablated muscles, which was responsible for the induction of atrogenes. Finally, compound 23 (an inhibitor of DJ-1) could mimic the effects of DJ-1 ablation in vivo. CONCLUSIONS: Our results illuminate the crucial of skeletal muscle DJ-1 in the regulation of catabolic signals from mechanical stimulation, providing a therapeutic target for muscle wasting diseases.


Assuntos
Músculo Esquelético , Transtornos Musculares Atróficos , Masculino , Humanos , Animais , Feminino , Camundongos , Idoso , Músculo Esquelético/patologia , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Transtornos Musculares Atróficos/metabolismo , Mitocôndrias/metabolismo
9.
RSC Med Chem ; 13(5): 594-598, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35694692

RESUMO

Two new Pt(iv) complexes featuring mesylate as the outer sphere anion, cis,trans,cis-[PtCl2(OH2)2(NH3)2](CH3SO3)2 (SPt-1) and cis,trans,cis-[PtCl2(OH2)2(1R,2R-DACH)](CH3SO3)2 (SPt-2), were synthesized and characterized by elemental analysis, 1H and 13C NMR, IR, and ESI-MS. Both complexes have excellent water-solubility, high molar conductivity and good water stability. They exhibit an irreversible two-electron reduction event with the peak potentials (E p) for the processes being -0.40 V for SPt-1 and -0.52 V for SPt-2. The biological tests reveal that SPt-2 possesses high in vitro anticancer activity against three human cancer cell lines (HCT-116, A549 and MKN-1) and its overall anticancer activity is slightly greater than that of oxaliplatin, whereas SPt-1 is less active than cisplatin. Moreover, the antitumor efficacy of SPt-2 on human colon carcinoma HCT-116 xenografts in nude mice is also greater than that of oxaliplatin, suggesting that SPt-2 deserves further evaluation as a prodrug for oxaliplatin.

10.
Artigo em Inglês | MEDLINE | ID: mdl-36231479

RESUMO

Quantitative assessment of urban vibrancy is crucial to understanding urban development and promoting sustainability, especially for rapidly developing areas and regions that have experienced post-disaster reconstruction. Taking Dujiangyan City, the hardest-hit area of the earthquake, as an example, this paper quantifies the urban economic, social, and cultural vibrancy after reconstruction by the use of multi-source data, and conducts a geographic visualization analysis. The purpose is to establish an evaluation framework for the relationship between the urban built environment elements and vibrancy in different dimensions, to evaluate the benefits of post-disaster restoration and reconstruction. The results show that the urban vibrancy reflected by classified big data can not be completely matched due to the difference in the data generation and collection process. The Criteria Importance Though Inter-criteria Correlation and entropy (CRITIC-entropy) method is used to construct a comprehensive model is a better representation of the urban vibrancy spatial characteristics. On a global scale, comprehensive vibrancy demonstrates high continuity and a bi-center structure. In the old town, the distribution of various urban vibrancies show diffusion characteristics, while those in the new district demonstrated a high degree of aggregation, and the comprehensive vibrancy is less sensitive to land-use mixture and more sensitive to residential land.


Assuntos
Desastres , Terremotos , Big Data , Ambiente Construído , China , Cidades , Planejamento de Cidades/métodos
11.
Nanomaterials (Basel) ; 12(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35010114

RESUMO

Surface charge transfer doping has attracted much attention in modulating the optical and electrical behavior of 2D transition metal dichalcogenides (TMDCs), where finding controllable and efficient dopants is crucial. Here, 1,1,2,2-tetraphenylethylene (TPE) derivative molecules with aggregation-induced emission (AIE) effect were selected as adjustable dopants. By designing nitro and methoxyl functional groups and surface coating, controlled p/n-type doping can be achieved on a chemical vapor deposition (CVD) grown monolayer, MoS2. We investigated the electron transfer behavior between these two dopants and MoS2 with fluorescence, Raman, X-ray photoelectron spectra and transient absorption spectra. 1,1,2,2-Tetrakis(4-nitrophenyl)ethane (TPE-4NO2) with a negative charge aggregation can be a donor to transfer electrons to MoS2, while 1,1,2,2-Tetrakis(4-methoxyphenyl)ethane (TPE-4OCH3) is the opposite and electron-accepting. Density functional theory calculations further explain and confirm these experimental results. This work shows a new way to select suitable dopants for TMDCs, which is beneficial for a wide range of applications in optoelectronic devices.

12.
Polymers (Basel) ; 14(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35808688

RESUMO

In this research work, a simple, efficient, and eco-friendly procedure for the biosorption of Cr(VI) ions was studied. A detailed comparative study was performed to check the adsorption efficiency of agrowaste (banana and potato peels)-based adsorbents. Firstly, mixed biosorbent was washed, dried and ground into powder, secondly, biosorbent was pyrolyzed into biochar and thirdly TiO2 nanocomposite (TiO2 NC) biosorbent was made by sonicating using prepared biochar and TiO2 NPs. Titanium dioxide nanoparticles (TiO2 NPs) were synthesized by a green method using Psidium guajava leaf extract. The synthesized adsorbents were characterized by SEM, EDX FT-IR, XRD and UV-visible analysis. The effect of four different factors, i.e., pH of the synthetic metallic solution, time, concentration and adsorbent dosage was studied. The optimum conditions were time (120 min), pH (3), concentration (10 ppm) and adsorbent dosage (1.0 g). The kinetic modeling showed that the adsorption of Cr(VI) ion follows a pseudo second-order mechanism and the Langmuir isotherm model was found to fit better for this study. Response surface methodology (RSM)-based optimized parameters provided optimal parameter sets that better represent the adsorption rate models. The uptake capacity of Cr(VI) from aqueous solution was found to be biomass (76.49 mg/L) ˂ biochar (86.51 mg/L) ˂ TiO2 NC (92.89 mg/L). It can be suggested that the produced TiO2 NC could possibly be an efficient biosorbent for the removal of Cr(IV).

13.
Nanomaterials (Basel) ; 12(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35335709

RESUMO

Monolayer 2H-MoS2 has been widely noticed as a typical transition metal dichalcogenides (TMDC) for surface-enhanced Raman scattering (SERS). However, monolayer MoS2 is limited to a narrow range of applications due to poor detection sensitivity caused by the combination of a lower density of states (DOS) near the Fermi energy level as well as a rich fluorescence background. Here, surfaced S and Mo atomic defects are fabricated on a monolayer MoS2 with a perfect lattice. Defects exhibit metallic properties. The presence of defects enhances the interaction between MoS2 and the detection molecule, and it increases the probability of photoinduced charge transfer (PICT), resulting in a significant improvement of Raman enhancement. Defect-containing monolayer MoS2 enables the fluorescence signal of many dyes to be effectively burst, making the SERS spectrum clearer and making the limits of detection (LODs) below 10-8 M. In conclusion, metallic defect-containing monolayer MoS2 becomes a promising and versatile substrate capable of detecting a wide range of dye molecules due to its abundant DOS and effective PICT resonance. In addition, the synergistic effect of surface defects and of the MoS2 main body presents a new perspective for plasma-free SERS based on the chemical mechanism (CM), which provides promising theoretical support for other TMDC studies.

14.
Biomater Sci ; 10(6): 1476-1485, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35142754

RESUMO

With the vigorous development of electronics and the increasingly prominent problem of environmental pollution, it is particularly important to exploit environmentally friendly electronic devices. Transient electronics represent a kind of device that once the specified functions have completed can completely or partially disappear through physical or chemical actions. In this work, we introduce a novel guar gum-cellulose aerogel (GCA) membrane based on natural biomaterials and successfully use it as an electrolyte film to fabricate a degradable zinc-ion battery (DZIB). All components of the prepared DZIBs can be successfully degraded or disintegrate in phosphate-buffered saline (PBS) containing a solution of proteinase K after approximately 40 days. This electrolyte film has a high ionic conductivity of approximately 4.73 × 10-2 S cm-1 and a good mechanical stress property. When applied to DZIB, the production of zinc dendrites can be restrained, leading to the battery showing excellent electrochemical performance. The battery exhibits a specific capacity of 309.1 mA h g-1 at a current density of 308 mA g-1 after 100 cycles and a steady cycling ability (100% capacity retention after 200 cycles). More importantly, the electrochemical performance of DZIB is better than that of transient batteries reported in the past, taking a solid step in the field of transient electronics in the initial stage.


Assuntos
Cyamopsis , Lítio , Celulose/química , Eletrólitos , Galactanos , Lítio/química , Mananas , Gomas Vegetais , Zinco
15.
Chemosphere ; 263: 127920, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32822936

RESUMO

Arsenic (As) and selenium (Se) pollution caused by coal combustion is receiving increasing concerns. The environmental impacts of As/Se are determined not only by stack emission but also by leaching process from combustion byproducts. For a better control of As/Se emission from As/Se-enriched coal combustion, this study investigated the migration and emission behavior of As/Se in a circulating fluidized bed (CFB) power plant equipped with fabric filter (FF) and wet flue gas desulfurization (WFGD) system. The results demonstrated that arsenic was both enriched in bottom ash (41.4-47.6%) and fly ash (52.4-58.6%), while selenium was mainly captured by fly ash (73.9-83.4%). Limestone injection into furnace promoted As/Se retention in ash residues. Arsenic was mainly converted into arsenate in high-temperature regions and partly trapped in bottom ash as arsenite. In contrast, selenium capture mainly occurred in low-temperature flue gas by the formation of selenite, because of the poor thermal stability of most selenite. Triplet-tank method can totally remove arsenic in WFGD wastewater. And 18.4-58.7% of selenium was removed, resulting from the precipitation of Se4+ anions with highly soluble Se6+ anions remaining in wastewater. The concentrations of As and Se in the stack emission were 0.25-1.02 and 0.96-2.24 µg/m3, receptively. The CFB boiler equipped with FF + WFGD was shown to provide good control of the As/Se emission into the atmosphere. Leaching tests suggested that more attention should be paid to As leachability from fly ash/gypsum, and Se leachability from gypsum/sludge.


Assuntos
Poluentes Atmosféricos/análise , Arsênio/análise , Centrais Elétricas , Selênio/análise , Atmosfera , Leitos , Carbonato de Cálcio , Sulfato de Cálcio , Carvão Mineral/análise , Cinza de Carvão/química , Monitoramento Ambiental , Gases
16.
Chemosphere ; 263: 127974, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32828060

RESUMO

CaCr2O4 (Cr (III)), mainly generated through the decomposition of CaCrO4 (Cr (VI)), is a significant intermediate for toxic Cr (VI) formation during solid fuel combustion. In this study, the formation, oxidation and sulfation kinetics of CaCr2O4 were analyzed to forecast the potential of CaCr2O4 oxidation during co-firing of coal and solid waste in a circulating fluidized bed boiler. The results indicated that the formation and oxidation of CaCr2O4 were fitted to a single step nucleation and growth model while CaCr2O4 sulfation was fitted to a shrinking core model. CaCr2O4 formation through CaCrO4 decomposition was favored in oxygen-lean atmosphere and considerably suppressed in the presence of oxygen. In contrast, CaCr2O4 oxidation was mainly determined by the contacts between CaCr2O4 and CaSO4/CaO, which influenced not only oxidation rates but also the product species. Moreover, the oxidation reactivity of CaCr2O4 was higher in the presence of CaO than that of CaSO4. On the other hand, CaCr2O4 sulfation can occur more easily than CaCr2O4 oxidation, the reaction rate of which was deeply affected by sulfate product layer. Findings in this study suggested that spraying calcium in furnace for desulphurization may increase the risk of CaCr2O4 oxidation. Measures including the adjustment of Ca/S ratio in blended fuel (with added limestone) and operating conditions (such as temperature and local atmosphere) in co-firing system could be taken to control CaCr2O4 formation and oxidation.


Assuntos
Cromo/química , Carvão Mineral/análise , Eliminação de Resíduos/métodos , Resíduos Sólidos , Leitos , Cromo/análise , Cinza de Carvão , Oxirredução , Oxigênio , Sulfatos , Temperatura
17.
Nanomaterials (Basel) ; 11(12)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34947808

RESUMO

Rapid and effective detection of pesticide residues from complex surfaces of fruits and vegetables has important significance. Herein, we report a novel three-dimensional (3D) hierarchical porous functional surface-enhanced Raman scattering (SERS) substrate, which is fabricated by successive two-step hydrothermal synthesis strategy of silver nanoparticles (Ag NPs) and cobalt oxide nanowires (Co3O4 NWs) on the 3D copper foam framework as Cu@Co3O4@Ag-H. The strategy offers a new avenue for localized plasmonic materials distribution and construction, which exhibits better morphology regulation ability and SERS activity (or hotspots engineering) than physical spurring obtained Cu@Co3O4@Ag-S. The developed Cu@Co3O4@Ag-H possesses large surface area and rich hotspots, which contributes to the excellent SERS performance, including homogeneity (RSD of 7.8%), sensitivity (enhancement factor, EF of 2.24 × 108) and stability. The Cu@Co3O4@Ag-H not only provides plenty of Electromagnetic enhancement (EM) hotspots but also the trace detection capability for droplet rapid sensing within 2 s. Cu@Co3O4@Ag-H substrate is further developed as an effective SERS sensing platform for pesticide residues detection on the surfaces of fruits and vegetables with excellent LOD of 0.1 ppm, which is lower than the most similar reported works. This work offers new potential for bioassay, disease POCT diagnosis, national security, wearable flexible devices, energy storage and other related fields.

18.
Nanomaterials (Basel) ; 11(9)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34578509

RESUMO

Recently, alkaline direct methanol fuel cells have made great progress with the development of alkaline electrocatalysis, and a wide variety of catalysts have been explored for methanol oxidation reaction (MOR)and oxygen reduction reaction (ORR). However, the slow kinetics of the MOR and ORR remain a great challenge. In this paper, self-supported defect-rich AuCu was obtained by a convenient one-pot strategy. Self-supported AuCu presented a branched, porous nanostructure. The nanobranch consisted of several 13 nm skeletons, which connected in the kink of the structure. Different growth directions co-existed at the kink, and the twin boundaries and dislocations as defects were observed. When the Au-based nanostructure functioned as an electrocatalyst, it showed robust MOR and ORR performance. For the MOR, the forward peak current was 2.68 times greater than that of Au/C; for the ORR, the activity was close to that of Pt/C and significantly better than that of Au/C. In addition, it possessed superior electrochemical stability for MOR and ORR. Finally, an in-depth exploration of the impact of surface defects and electrochemical Cu removal on MOR and ORR activity was carried out to explain the MOR and ORR's catalytic performance.

19.
ACS Appl Mater Interfaces ; 13(33): 39458-39469, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433254

RESUMO

It is necessary to correctly research and synthesize efficient and inexpensive catalysts to achieve reversible oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), which is also a prerequisite for zinc-air batteries (ZABs). However, it is still a huge challenge to manufacture electrocatalysts with durable and high electrocatalytic performance from biomass. Here, a convenient method of delignification was used to transform natural balsa wood into a layered porous carbon material, FeCo alloy supported on a N, S-doped wood-based carbon aerogel (FeCo@NS-CA) as the cathode in rechargeable flow ZAB. The obtained FeCo@NS-CA with the porous lamellar architecture exhibits superior bifunctional electrocatalysis, including excellent electrochemical activities and superior stabilities. For ORR, relative to the reversible hydrogen electrode, the onset potential of FeCo@NS-CA is 0.97 V, and the half-wave potential is 0.85 V, which is consistent with the potential of commercial Pt/C. For OER, FeCo@NS-CA obtained an overpotential of 450 mV, which is very similar to the overpotential of the benchmark RuO2. The superior performance could be owing to the alloy carrier interaction between the FeCo alloy and the wood-based carbon aerogel co-doped with N and S. Moreover, the bifunctional air cathode in a flow ZAB assembled with the FeCo@NS-CA catalyst at a current density of 10 mA cm-2; the power density is 140 mW cm-2, and the specific capacitance is 760 mA h gZn-1, with a remarkable long-term stability of 400 h better than ZAB of benchmark Pt/C + RuO2. This research lays the foundation for transforming abundant biomass resources into high environmental protection materials for energy-related applications.

20.
ACS Appl Mater Interfaces ; 13(7): 8285-8293, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33586429

RESUMO

Transient supercapacitors (TSCs), a new type of advanced supercapacitor (SC) that can completely dissolve with environmentally and biologically benign byproducts in vivo after performing their specified function, have broad application prospects in the fields of green electronics, implantable devices, personalized medicine, military security, and other fields. However, research on TSCs is still in its infancy, and there are still many challenges to be solved, such as the complex preparation process and low energy density. Herein, we report a facile superassembly manufacturing method for an implantable and fully biodegradable three-dimensional network Zn@PPy hybrid electrode by screen printing and electrochemical deposition. The produced superassembled interdigital pseudocapacitor exhibits superior electrochemical performances due to the high capacitances and excellent rate performances of the pattern Zn@PPy electrode and NaCl/agarose electrolyte. An optimized biodegradable SC exhibits a maximum energy density of 0.394 mW h cm-2 and can be fully degraded in vivo in 30 days without any adverse effects in the host organism. This work provides a new platform for transient electronic technology for diverse implantable electronic applications.


Assuntos
Materiais Biocompatíveis/química , Imageamento Tridimensional , Polímeros/química , Pirróis/química , Zinco/química , Animais , Capacitância Elétrica , Eletrodos , Camundongos , Imagem Óptica , Tamanho da Partícula , Células RAW 264.7 , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA